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Abstract

Determining the fitness status of the immune system is one of the central challenges of
modern biomedical sciences, due to the relationship it has with senescence processes and
aging. Currently, there is no universally valid metric that allows establishment when an
individual's immune system is competent and to what degree it is competent in each
pathology. In the present study, a model of complex adaptive networks is developed, whose
nodes are made up of the eleven central types of immune cells, focused on the phase
transitions of entropy to distinguish the optimal functioning of the immune network in
contrast to what occurs in cases of immunodeficiency states, both primary and secondary.
The results of the dynamic simulation indicate the presence of differentiated profiles between
the immunocompetence and immunodeficiency states of the immune system and provide
evidence on the state of the complex immune network and its internal connectivity,
suggesting the presence of aging patterns of the immune response effector networks. This
entropy-based approach offers quantitative, holistic assessment of immune status with
potential applications in Al-driven diagnostic systems, disease monitoring, and personalized
immunomodulatory therapies.

Keywords: systems immunology; immune fitness; entropy phase transition; complex
adaptive networks; Immunodeficiencies


https://doi.org/10.x/journal.x.x.x
mailto:jdariob@sanmateo.edu.co
mailto:jdburgoss@corporacionciinas.org

2025, Vol. 1
doi:10.x/journal.x.x.x & SCI FI N ITI

PUBLISHING

Q

Introduction

What characterizes an optimal immune response? The obvious answer is usually that it
effectively controls an infection, that some type of cancer does not develop or that it does not
generate a disease associated with hyperreactivity of the immune system such as allergies or
autoimmune diseases, or on the contrary that some disease is generated due to the weakness
or absence of the immune response capacity [1]. However, this response characterizes
immunocompetence by its results even without understanding how it fully works.

On the other hand, the development and application of efficient vaccines allow us to
understand that a protective immune response can be induced by biotechnological means [2],
which although it is a considerable advance in terms of human well-being and health, still
leads us to consider the action of the immune system from a totally empirical perspective [3].
Also, since the monitoring of the action of vaccines focuses on the measurement of cells and
molecules that effector the immune response [4,5], a strategy that, although it has had a very
positive impact, has contributed little to the understanding of the global mechanisms that give
rise to a condition of immune fitness.

The theoretical approaches related to representing the immune system as a social network
[6], as a complex adaptive system [7] or as an information transmission network [8], have
allowed, being based on the use of mathematical models of finite graphs [9,10], the
application of basic notions of information theory to the study of biological networks [11],
in particular the concept of entropy, which is shown as a possible indicator of health status
in humans [12], suggesting the presence of immune disorders [13], the progression of a
disease [14], or the prediction of one [15].

The determination of the total mass, number and distribution of the eleven central cell types
that make up the human immune system [16] generates essential information to carry out
new quantitative models of the dynamics of immune networks as complex adaptive networks,
as is the case of this work in which the basic immune network is represented as a connected
graph of eleven nodes whose evolution is modeled by a system of differential equations
ordinary and system dynamics [17].

Finally, considering, first, the useful background of the notion of entropy in the
characterization of the state of a biological network, second, its illuminating applications in
ecology [18,19], where phase transitions of entropy detect critical changes in natural
ecosystems [19], and third, the availability of general methods for the detection of phase
transitions in complex evolutionary networks [20,21], We propose a way to characterize and
measure the transition dynamics of the entropy phase associated with an optimal immune
system and also associated, in contrast, with primary and secondary immunodeficiency
states, supporting the usefulness of this theoretical approach has been shown to have in
biomedicine [22, 23] and the use of information theory to characterize complex networks
[24].
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Through systematic simulation of primary immunodeficiencies (genetic defects affecting
specific immune components) and secondary immunodeficiencies (acquired conditions
compromising immune function), we aim to demonstrate that entropy phase transitions can
serve as distinctive signatures for various immunological states, establishing a quantitative
framework that could integrates artificial intelligence systems with automated immune
repertoire analysis, advancing our capacity to assess and manage immunological health in
clinical settings.

Methods
Complex Adaptive Network Model

Based on the premise that the immune system is a complex network, we develop a
computational model incorporating the eleven known major human immune cells [16],
including eleven major cell types: T lymphocytes, B lymphocytes, natural killer cells,
basophils, eosinophils, neutrophils, mast cells, macrophages, monocytes, plasma cells, and
dendritic cells. The model was structured following Treur's formalism for network analysis
[17], with each cell type represented as a node in the network (See Supplementary Data Table
1 for details.) The key assumptions of our model include: The model of the healthy immune
system is based on the optimal state of immune fitness characterized by the dynamics of
eleven major immune cell types of populations conforming to a fully connected network
under normal physiological conditions, assuming:

1. The immune network is fully connected in its optimal state, with each cell population
potentially interacting with all the others.

2. Each cell population grows logistically once stimulated by an antigen.

3. Growth parameters are based on physiological carrying capacities derived from empirical
data on human immune cell proportions.

4. Mortality rates vary between cell populations based on known lifespans.

It is important to note that the current model does not explicitly distinguish between naive
and antigen-induced (activated) immune cells, we acknowledge that entropy values may vary
depending on the state of activation. This distinction represents an important direction for
future refinement of the model.

Currently, there are theoretical tools that measure the entropy of complex networks [24], and
there are also models that enable their numerical representation and dynamic simulation
using role matrices and differential equations [17]. Since the immune system is a complex
network [6], and that, for the first time, there is a rigorous quantification of the eleven major
types of cell populations that make up the immune system [16], a complex adaptive network
model is developed following Treur's formalism (See Supplementary Data Figure 1 for
details), and assuming that it is a connected network in which each type of cell population
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grows logistically once they are stimulated by any antigen (See Supplementary Data Table
2 for details). The Function Parameters Carrying capacity (K) and Mortality rate (MR) were
obtained respectively from [16] and [25] respectively. Interaction strength (Winy) was derived
from [26].

Dynamic simulation of the immune network is made using the following combination
function (CF):

ax; 1—X;
G = W X () R

Entropy calculation

We calculated network entropy (S) using Shannon's information entropy formula,

S =~k ) p(log (P(X)
i=1

Network Density Analysis

To measure the link density (edge density) of a network, we calculate the ratio of existing
links (m) to the total number of possible links. For a network of N nodes, the network link
density is
_ m
D_O.S*N*(N—l)

The (maximal) link density D of a completely connected network is 1.
Simulating Immunodeficiencies

To model primary and secondary immunodeficiencies, we systematically modified the
network structure by eliminating nodes (X;) and reducing their connections as described in
(supplementary Data Table 3) following the well-known clinical processes involved in these
diseases [27-30].

Results

The results of this work include the determination of the entropy phase transition for the state
of immunocompetence, and in primary and secondary immunodeficiencies.
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Immune fitness

The study begins by simulating the optimal immune network, modeling the interactions of
eleven key immune cell populations, such as T lymphocytes, B lymphocytes, and natural
killer cells. Our study performs the dynamic simulation of an optimal immune network in
which the eleven main cell populations of the immune system exhibit a logistic growth whose
Kand MR parameters take values considered typical of normal patterns of immune response
in healthy individuals. The resulting pattern can be seen in Figure 1A. The entropy phase
change associated with the optimal immune response state is presented in Figure 1B and can
be characterized as a three-phase pattern as described below:

Stage 1: Network Activation (0 <t <t)

o Rapid entropy increasing
e Resource allocation and path development
o Network startup or traffic surge response

Stage 2: Coordination (t: <t <t)

o Entropy decreases as optimal flows established
o Route convergence and load balancing
o Efficient resource utilization patterns emerge

Stage 3: Stabilization (t > t2)

o Stable entropy representing steady-state operation
o Established traffic patterns and resource allocation
e Network maintains responsiveness to changes

This entropy signature encapsulates the dynamic interplay of activation, regulation or
coordination, and stabilization memory consolidation in a healthy immune system.

Immunodeficiencies

The behavior of phase transitions of entropy in primary and secondary immunodeficiencies
and the connectivity condition is presented respectively in Figure 2 and Figure 3. Our results
indicate the sensitivity of entropy analysis to detect immune dysfunctions linking changes in
entropy dynamics with changes in immune network connectivity.
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Figure 1. Behavior of an immune system under optimal conditions.
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Figure 2. Entropy transitions for primary immunodeficiencies.
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Figure 3. Entropy transitions for secondary immunodeficiencies.
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In Figure 4 we present a power law relationship between connection density (D) and
maximum entropy (Smax), with an exponent of 0.4349, resembling what is known as “aging
property,” suggesting that immunodeficient networks lose their scale-free properties,
becoming more homogeneous and less capable of forming preferential connections.
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Figure 4. The power-law relationship between entropy and immune network connectivity
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Discussion

Our results indicate that entropy phase transitions can differentiate between
immunocompetence and immunodeficiency status of the immune network. The entropy
patterns observed in optimal immune networks likely corresponds to key immunological
events: initial activation and expansion, coordination of specific effector responses, and
maintenance of memory, aligning with current understanding of immune response kinetics
[31].

The ageing property provides insight into the structural basis of immune network dysfunction
[32,33], explaining why immunodeficiencies often affect multiple immune functions beyond
the primary defect: the network loses its ability to compensate through alternative pathways
[34,35]. By contrast, the human immune system exhibits scale-free properties in their optimal
state [36-40], showing highly connected "hub" nodes and many sparsely connected ones, a
topology that confers robustness and efficiency [41]. The finding that immunodeficient
networks lose these scale-free properties and become "more homogeneous" suggests a
fundamental shift away from this optimal, robust architecture. Homogenization implies that
the distinction between highly connected hubs and less connected nodes diminishes [42].

Our approach offers several advantages over traditional immunological assessments, like
providing a holistic measure that integrates multiple immune parameters, capturing dynamic
properties of the immune response rather than static measurements and establishing
quantitative relationships between network structure and function.
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Considering the limitations of our study, first, the model assumes logistic growth dynamics
for all cell populations, oversimplifying the complex immune kinetics [43]. Second, the
model does not account for spatial factors in immune cell interactions [44] nor for connection
weights between cell types are not differentiated based on signaling strength or type. On the
other hand, clinical validation is paramount from a translational perspective; without
empirical data from human patients, the model remains a theoretical framework, emphasizing
the crucial next step of bridging computational predictions with real-world clinical
observations, which is essential for establishing diagnostic and prognostic utility and
advancing computational biology into clinical practice. While the present study focuses on
immunodeficiencies, we recognize the potential of entropy-based signatures to distinguish
between types of infections.

Moreover, interindividual variability is a critical factor in immune system modeling. In future
research, enabling the model to be more robust in capturing individualized immune
dynamics, wherein advanced computing and Al tools such as deep learning, probabilistic,
hybrid models, and the use of supercomputing resources to perform advanced simulations of
biological systems can now be applied to demystify the complexity of the human immune
system [45,46]. For instance, deep learning approaches must be used to estimate the
parameter values for immune age, which are strongly correlated with multimorbidity,
inflammatory markers, immune senescence, frailty, and cardiovascular aging..

Lastly, the ability to decode and harness the power of the human immune system is one of
the great frontiers of biomedicine. The immune system represents a complex network of
genes, proteins, cells, and tissues, a billion or more times larger than the entire human
genome. It differs among individuals and changes over time because a wide range of factors,
including age, genetic, and environmental factors influences it..

Conclusion

The present work models the complex network of interactions between the eleven central cell
types that make up the human immune system using system dynamics and adaptive networks
making use of entropy phase changes to determine how the state of optimal immune response
or immunocompetence is characterized, finding a pattern of three states: activation,
coordination and stabilization of the network. Next, the dynamics of the entropy phase
change of the immune network under immunodeficiency scenarios, both primary and
secondary, are estimated, finding entropy phase change patterns for each disease. The
methodology presented here supports the search for a holistic understanding of the
functioning of immune effector cell networks.

Abbreviations list

Abbreviation Definition
Al Artificial Intelligence
AIDS Acquired Immune Deficiency Syndrome
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BAS Basophils

B-Cells B-Lymphocytes (used in data tables)

Bruton X-linked Agammaglobulinemia (Bruton Disease)

CGD Chronic Granulomatous Disease

CF Combination Function (model equation)

DC Dendritic Cells

DiGeorge DiGeorge Syndrome (Congenital Thymic Aplasia)

D Link Density (network parameter)

EOS Eosinophils

HIV Human Immunodeficiency Virus

K Carrying Capacity (model parameter)

MA Macrophages

MAST Mastocytes (Mast Cells)

MO Monocytes

MR Mortality Rate (model parameter)

NEU Neutrophils

NK Natural Killer Cells

PC Plasmatic Cells (Plasma Cells)

S Shannon's Entropy (network entropy)

Smax Maximum Entropy

SCID Severe Combined Immunodeficiency

T-Cells T-Lymphocytes (used in data tables)

Wint Interaction Strength (model parameter)

X1-X11 Model variables for immune cell populations (see supplementary Table
9]
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