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Abstract 

Determining the fitness status of the immune system is one of the central challenges of 

modern biomedical sciences, due to the relationship it has with senescence processes and 

aging. Currently, there is no universally valid metric that allows establishment when an 

individual's immune system is competent and to what degree it is competent in each 

pathology. In the present study, a model of complex adaptive networks is developed, whose 

nodes are made up of the eleven central types of immune cells, focused on the phase 

transitions of entropy to distinguish the optimal functioning of the immune network in 

contrast to what occurs in cases of immunodeficiency states, both primary and secondary. 

The results of the dynamic simulation indicate the presence of differentiated profiles between 

the immunocompetence and immunodeficiency states of the immune system and provide 

evidence on the state of the complex immune network and its internal connectivity, 

suggesting the presence of aging patterns of the immune response effector networks. This 

entropy-based approach offers quantitative, holistic assessment of immune status with 

potential applications in AI-driven diagnostic systems, disease monitoring, and personalized 

immunomodulatory therapies. 
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Introduction 

What characterizes an optimal immune response? The obvious answer is usually that it 

effectively controls an infection, that some type of cancer does not develop or that it does not 

generate a disease associated with hyperreactivity of the immune system such as allergies or 

autoimmune diseases, or on the contrary that some disease is generated due to the weakness 

or absence of the immune response capacity [1]. However, this response characterizes 

immunocompetence by its results even without understanding how it fully works.  

On the other hand, the development and application of efficient vaccines allow us to 

understand that a protective immune response can be induced by biotechnological means [2], 

which although it is a considerable advance in terms of human well-being and health, still 

leads us to consider the action of the immune system from a totally empirical perspective [3].  

Also, since the monitoring of the action of vaccines focuses on the measurement of cells and 

molecules that effector the immune response [4,5], a strategy that, although it has had a very 

positive impact, has contributed little to the understanding of the global mechanisms that give 

rise to a condition of immune fitness. 

The theoretical approaches related to representing the immune system as a social network 

[6], as a complex adaptive system [7] or as an information transmission network [8], have 

allowed, being based on the use of mathematical models of finite graphs [9,10], the 

application of basic notions of information theory to the study of biological networks [11],  

in particular the concept of entropy, which is shown as a possible indicator of health status 

in humans [12], suggesting the presence of immune disorders [13], the progression of a 

disease [14], or the prediction of one [15]. 

The determination of the total mass, number and distribution of the eleven central cell types 

that make up the human immune system [16] generates essential information to carry out 

new quantitative models of the dynamics of immune networks as complex adaptive networks, 

as is the case of this work in which the basic immune network is represented as a connected 

graph of eleven nodes whose evolution is modeled by a system of differential equations 

ordinary and system dynamics [17].  

Finally, considering, first, the useful background of the notion of entropy in the 

characterization of the state of a biological network, second, its illuminating applications in 

ecology [18,19], where phase transitions of entropy detect critical changes in natural 

ecosystems [19], and third, the availability of general methods for the detection of phase 

transitions in complex evolutionary networks [20,21],  We propose a way to characterize and 

measure the transition dynamics of the entropy phase associated with an optimal immune 

system and also associated, in contrast, with primary and secondary immunodeficiency 

states, supporting the usefulness of this theoretical approach has been shown to have in 

biomedicine [22, 23] and the use of information theory to characterize complex networks 

[24]. 
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Through systematic simulation of primary immunodeficiencies (genetic defects affecting 

specific immune components) and secondary immunodeficiencies (acquired conditions 

compromising immune function), we aim to demonstrate that entropy phase transitions can 

serve as distinctive signatures for various immunological states, establishing a quantitative 

framework that could integrates artificial intelligence systems with automated immune 

repertoire analysis, advancing our capacity to assess and manage immunological health in 

clinical settings. 

 

Methods 

Complex Adaptive Network Model  

Based on the premise that the immune system is a complex network, we develop a 

computational model incorporating the eleven known major human immune cells [16], 

including eleven major cell types: T lymphocytes, B lymphocytes, natural killer cells, 

basophils, eosinophils, neutrophils, mast cells, macrophages, monocytes, plasma cells, and 

dendritic cells. The model was structured following Treur's formalism for network analysis 

[17], with each cell type represented as a node in the network (See Supplementary Data Table 

1 for details.) The key assumptions of our model include: The model of the healthy immune 

system is based on the optimal state of immune fitness characterized by the dynamics of 

eleven major immune cell types of populations conforming to a fully connected network 

under normal physiological conditions, assuming: 

1. The immune network is fully connected in its optimal state, with each cell population 

potentially interacting with all the others.  

2. Each cell population grows logistically once stimulated by an antigen.  

3. Growth parameters are based on physiological carrying capacities derived from empirical 

data on human immune cell proportions.  

4. Mortality rates vary between cell populations based on known lifespans. 

It is important to note that the current model does not explicitly distinguish between naive 

and antigen-induced (activated) immune cells, we acknowledge that entropy values may vary 

depending on the state of activation. This distinction represents an important direction for 

future refinement of the model. 

Currently, there are theoretical tools that measure the entropy of complex networks [24], and 

there are also models that enable their numerical representation and dynamic simulation 

using role matrices and differential equations [17]. Since the immune system is a complex 

network [6], and that, for the first time, there is a rigorous quantification of the eleven major 

types of cell populations that make up the immune system [16], a complex adaptive network 

model is developed following Treur's formalism (See Supplementary Data Figure 1 for 

details), and assuming that it is a connected network in which each type of cell population 

https://doi.org/10.x/journal.x.x.x
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grows logistically once they are stimulated by any antigen (See Supplementary Data Table 

2 for details). The Function Parameters Carrying capacity (K) and Mortality rate (MR) were 

obtained respectively from [16] and [25] respectively. Interaction strength (Wint) was derived 

from [26]. 

Dynamic simulation of the immune network is made using the following combination 

function (CF): 

𝑑𝑋𝑖

𝑑𝑡
= 𝑊𝑖𝑛𝑡 ∗ 𝑋𝑖 (

1 − 𝑋𝑖

𝐾
) − 𝑀𝑅 ∗ 𝑋𝑖 

 

Entropy calculation 

We calculated network entropy (S) using Shannon's information entropy formula, 

 

𝑆 = −𝑘 ∑ 𝑝(𝑋𝑖 )log (𝑝(𝑋𝑖

𝑛

𝑖=1

)) 

 

 

Network Density Analysis 

To measure the link density (edge density) of a network, we calculate the ratio of existing 

links (m) to the total number of possible links. For a network of N nodes, the network link 

density is  

𝐷 =
𝑚

0.5 ∗ 𝑁 ∗ (𝑁 − 1)
 

The (maximal) link density D of a completely connected network is 1. 

Simulating Immunodeficiencies  

To model primary and secondary immunodeficiencies, we systematically modified the 

network structure by eliminating nodes (Xi) and reducing their connections as described in 

(supplementary Data Table 3) following the well-known clinical processes involved in these 

diseases [27-30]. 

Results 

The results of this work include the determination of the entropy phase transition for the state 

of immunocompetence, and in primary and secondary immunodeficiencies. 
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Immune fitness 

The study begins by simulating the optimal immune network, modeling the interactions of 

eleven key immune cell populations, such as T lymphocytes, B lymphocytes, and natural 

killer cells. Our study performs the dynamic simulation of an optimal immune network in 

which the eleven main cell populations of the immune system exhibit a logistic growth whose 

K and MR parameters take values considered typical of normal patterns of immune response 

in healthy individuals. The resulting pattern can be seen in Figure 1A.  The entropy phase 

change associated with the optimal immune response state is presented in Figure 1B and can 

be characterized as a three-phase pattern as described below: 

Stage 1: Network Activation (0 ≤ t ≤ t₁) 

• Rapid entropy increasing 

• Resource allocation and path development 

• Network startup or traffic surge response 

Stage 2: Coordination (t₁ ≤ t ≤ t₂) 

• Entropy decreases as optimal flows established 

• Route convergence and load balancing 

• Efficient resource utilization patterns emerge 

Stage 3: Stabilization (t ≥ t₂) 

• Stable entropy representing steady-state operation 

• Established traffic patterns and resource allocation 

• Network maintains responsiveness to changes 

This entropy signature encapsulates the dynamic interplay of activation, regulation or 

coordination, and stabilization memory consolidation in a healthy immune system. 

Immunodeficiencies 

 The behavior of phase transitions of entropy in primary and secondary immunodeficiencies 

and the connectivity condition is presented respectively in Figure 2 and Figure 3. Our results 

indicate the sensitivity of entropy analysis to detect immune dysfunctions linking changes in 

entropy dynamics with changes in immune network connectivity. 
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Figure 1. Behavior of an immune system under optimal conditions. 

 
 

Figure 1A. Dynamic simulation for logistic 

combination functions for the immune effector cell 

types considered under optimal conditions 

Figure 1B. Phase entropy transition for optimal 

immune fitness 

 

Figure 2. Entropy transitions for primary immunodeficiencies. 
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Figure 3. Entropy transitions for secondary immunodeficiencies. 

 

 

Aging property 

In Figure 4 we present a power law relationship between connection density (D) and 

maximum entropy (Smax), with an exponent of 0.4349, resembling what is known as “aging 

property,” suggesting that immunodeficient networks lose their scale-free properties, 

becoming more homogeneous and less capable of forming preferential connections.  
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Figure 4. The power-law relationship between entropy and immune network connectivity 

 

 

Discussion 

Our results indicate that entropy phase transitions can differentiate between 

immunocompetence and immunodeficiency status of the immune network. The entropy 

patterns observed in optimal immune networks likely corresponds to key immunological 

events: initial activation and expansion, coordination of specific effector responses, and 

maintenance of memory, aligning with current understanding of immune response kinetics 

[31]. 

The ageing property provides insight into the structural basis of immune network dysfunction 

[32,33], explaining why immunodeficiencies often affect multiple immune functions beyond 

the primary defect: the network loses its ability to compensate through alternative pathways 

[34,35]. By contrast, the human immune system exhibits scale-free properties in their optimal 

state [36-40], showing highly connected "hub" nodes and many sparsely connected ones, a 

topology that confers robustness and efficiency [41]. The finding that immunodeficient 

networks lose these scale-free properties and become "more homogeneous" suggests a 

fundamental shift away from this optimal, robust architecture. Homogenization implies that 

the distinction between highly connected hubs and less connected nodes diminishes [42]. 

Our approach offers several advantages over traditional immunological assessments, like 

providing a holistic measure that integrates multiple immune parameters, capturing dynamic 

properties of the immune response rather than static measurements and establishing 

quantitative relationships between network structure and function.  
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Considering the limitations of our study, first, the model assumes logistic growth dynamics 

for all cell populations, oversimplifying the complex immune kinetics [43]. Second, the 

model does not account for spatial factors in immune cell interactions [44] nor for connection 

weights between cell types are not differentiated based on signaling strength or type. On the 

other hand, clinical validation is paramount from a translational perspective; without 

empirical data from human patients, the model remains a theoretical framework, emphasizing 

the crucial next step of bridging computational predictions with real-world clinical 

observations, which is essential for establishing diagnostic and prognostic utility and 

advancing computational biology into clinical practice. While the present study focuses on 

immunodeficiencies, we recognize the potential of entropy-based signatures to distinguish 

between types of infections. 

Moreover, interindividual variability is a critical factor in immune system modeling. In future 

research, enabling the model to be more robust in capturing individualized immune 

dynamics, wherein advanced computing and AI tools such as deep learning, probabilistic, 

hybrid models, and the use of supercomputing resources to perform advanced simulations of 

biological systems can now be applied to demystify the complexity of the human immune 

system [45,46]. For instance, deep learning approaches must be used to estimate the 

parameter values for immune age, which are strongly correlated with multimorbidity, 

inflammatory markers, immune senescence, frailty, and cardiovascular aging.. 

Lastly, the ability to decode and harness the power of the human immune system is one of 

the great frontiers of biomedicine. The immune system represents a complex network of 

genes, proteins, cells, and tissues, a billion or more times larger than the entire human 

genome. It differs among individuals and changes over time because a wide range of factors, 

including age, genetic, and environmental factors influences it..  

Conclusion 

The present work models the complex network of interactions between the eleven central cell 

types that make up the human immune system using system dynamics and adaptive networks 

making use of entropy phase changes to determine how the state of optimal immune response 

or immunocompetence is characterized, finding a pattern of three states: activation, 

coordination and stabilization of the network. Next, the dynamics of the entropy phase 

change of the immune network under immunodeficiency scenarios, both primary and 

secondary, are estimated, finding entropy phase change patterns for each disease. The 

methodology presented here supports the search for a holistic understanding of the 

functioning of immune effector cell networks. 

 

Abbreviations list 

Abbreviation Definition 

AI Artificial Intelligence 

AIDS Acquired Immune Deficiency Syndrome 
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BAS Basophils 

B-Cells B-Lymphocytes (used in data tables) 

Bruton X-linked Agammaglobulinemia (Bruton Disease) 

CGD Chronic Granulomatous Disease 

CF Combination Function (model equation) 

DC Dendritic Cells 

DiGeorge DiGeorge Syndrome (Congenital Thymic Aplasia) 

D Link Density (network parameter) 

EOS Eosinophils 

HIV Human Immunodeficiency Virus 

K Carrying Capacity (model parameter) 

MA Macrophages 

MAST Mastocytes (Mast Cells) 

MO Monocytes 

MR Mortality Rate (model parameter) 

NEU Neutrophils 

NK Natural Killer Cells 

PC Plasmatic Cells (Plasma Cells) 

S Shannon's Entropy (network entropy) 

Smax Maximum Entropy 

SCID Severe Combined Immunodeficiency 

T-Cells T-Lymphocytes (used in data tables) 

Wint Interaction Strength (model parameter) 

X1–X11 Model variables for immune cell populations (see supplementary Table 

1) 
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