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Abstract
In the rapidly evolving landscape of wireless communication, visible light communication (VLC) stands out for its potential to
redefine high-speed data exchange. Recently, VLC has utilized waveforms that combine multiple bitstreams in a unified physical
layer, allowing for high-speed data exchange, precise localization, and robust control simultaneously. Particularly, the demodulation
tasks of beacon position modulation (BPM) and beacon phase shift keying (BePSK) are central to decoding of such waveforms and
pose significant computational challenges. This paper explores the application of multi-task learning (MTL) to these demodulation
processes and aims at reducing the complexity associated with these tasks. By systematically developing and optimizing MTL
architectures, this study introduces a sequence of models, culminating in a cross-stitch (CS) model that significantly enhances
the performance and computational complexity over traditional single-task learning (STL) approaches for the demodulation of
VLC waveforms. The CS model demonstrates substantial reductions in model complexity which showcase the potential of VLC
waveforms in resource-limited and cost-effective applications, such as Internet-of-Things (IoT) devices. These are quantified as a
26% decrease in trainable parameters and a 10% reduction in FLOPs, compared to STL models. These advancements highlight the
potential of MTL to improve the scalability and operational feasibility of VLC systems.
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1. Introduction

As wireless technologies continue to evolve, visible light
communication (VLC) has emerged as a transformative
solution, offering several advantages over conventional ra-
dio frequency (RF) systems. By utilizing the visible light
spectrum, VLC offers advantages in speed, security, and
bandwidth [1–3]. At the core of VLC systems lie novel
waveforms that integrate multiple bitstreams into a sin-
gle, unified physical layer. Due to this integration, these
waveforms simultaneously enable high-speed data trans-
mission, accurate localization, and robust control, essen-
tial for the deployment of versatile and efficient commu-
nication systems. For example, recent works [4–7] dis-
cuss the integration of multiple bitstreams within a sin-
gle physical layer solution. The versatility of these wave-
forms stems from their ability to seamlessly blend various

modulation techniques, such as beacon position modula-
tion (BPM) and beacon phase shift keying (BePSK). The
accurate demodulation of these tasks is key to decode mul-
tiple bit streams effectively. Amid these advancements,
multi-task learning (MTL) has come to play a pivotal role,
leveraging shared information across multiple tasks, en-
hancing learning efficiency and performance [8]. In this
context, for complex tasks such as the demodulation of
novel waveforms, MTL offers substantial benefits over
traditional single-task learning (STL) approaches, which
handle tasks such as BPM and BePSK demodulation in-
dependently. STL often leads to increased system com-
plexity and resource demands due to the need for sepa-
rate models for each task, resulting in redundancy and in-
efficiency [9]. In contrast, MTL facilitates simultaneous
training [10–12] on related tasks enabling the optimiza-
tion of multiple communication system components con-
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currently. This approach not only reduces complexity, but
also enhances resource utilization by leveraging shared
representations and synergies between tasks. Such effi-
ciency is critical in VLC networks where real-time pro-
cessing demands high responsiveness. Ultimately, MTL
streamlines operations, lowers energy consumption, and
boosts overall system performance, making it a superior
choice for managing the intricate demodulation processes
required in advanced VLC applications. This paper fo-
cuses on the design and optimization of MTL models that
specifically cater to the demodulation of VLC waveforms.
It explores various model architectures, evolving from ini-
tial designs to advanced configurations, aiming to signif-
icantly reduce the complexity inherent in these MTL net-
works. The development of each of model iteration is
guided by ablation studies, as discussed in [13–15], that
systematically evaluates the impact of various architec-
tural features on model performance and complexity. The
contributions of this study are detailed as follows:

• Introduction of advanced MTL models: This study
presents a novel MTL architecture making use of a
special architectural block within the task-specific
layers, designed to efficiently handle the complexi-
ties associated with the demodulation of VLC wave-
forms.

• Systematic reduction of complexity: Through iter-
ative enhancements and optimizations, this study
demonstrates how each model variant contributes to
a systematic reduction in computational complexity
while maintaining high accuracy and efficiency.

The rest of the paper is structured as follows: Sec-
tion II discusses related work, emphasizing significant de-
velopments in MTL and its application to VLC systems.
Section III outlines the VLC waveform design, detailing
the integration of various modulation techniques for en-
hanced communication capabilities. Section IV explains
the methodology, describing the evolution of the MTL
models and detailing the implementation of ablation stud-
ies to refine these models. Section V presents the results,
providing a comparative analysis of model performance
and complexity. Finally, Section VI concludes the paper
with a summary of findings and discusses potential future
research directions. By addressing the complexities asso-
ciated with MTL in VLC networks, this paper aims to ad-
vance the field by setting new benchmarks for efficiency
and scalability in communication systems, thereby paving
the way for more robust and integrated VLC deployments.

2. Materials and Methods

2.1. Background and Related Work

MTLhas been a prominent paradigm since its introduction
in 1999 [8]. Significant advances have been made inMTL
over the past decade, and there have been subsequent
works that aim to formulate and establish relationships be-
tween tasks in an MTL network [9–11,16]. A novel deep
convolutional neural network (CNN) called MoDANet
(Multi-Task Deep Network for Joint Automatic Modula-
tion Classification and Direction of Arrival Estimation)
is introduced in [17] for simultaneously performing two
tasks: automatic modulation classification (AMC) and di-
rection of arrival (DOA) estimation of radio signals. The
network architecture is designed with multiple residual
modules to tackle the vanishing gradient problem, and it
employs a MTL approach with a Y-shaped connection to
learn shared representations between the AMC and DOA
tasks. The authors claim that MoDANet is the first deep
learning-based MTL model to handle the two unrelated
tasks of AMC and DOA estimation simultaneously. The
authors in [18] propose a novel MTL approach for joint
automatic modulation classification and wireless signal
classification using the RadCom datasets. It introduces
the first MTL framework in the wireless communications
domain to simultaneously perform modulation classifica-
tion and signal classification tasks on heterogeneous radar
and communication waveforms. The authors propose a
MTL architecture that uses a hard parameter-sharing strat-
egy, where the hidden layers are shared between tasks
while preserving task-specific layers. This allows learn-
ing a shared representation that captures all tasks, improv-
ing generalization and learning efficiency. The authors
conducted an extensive study on various hyperparame-
ters, such as task weights, network density, and layer con-
figurations, to arrive at a lightweight and efficient MTL
model. The research [19] presents a novel approach to
recognizing modulation schemes in cognitive radios us-
ing deep learning. Traditional methods for modulation
recognition, while powerful, can struggle with the dy-
namic conditions of real-world RF environments. This
paper addresses these challenges by introducing a MTL
approach that utilizes a deep convolutional neural network
to extract features necessary for classifying different mod-
ulation schemes. The proposedMTL approach aims to im-
prove classification accuracy by training separate tasks for
modulation classes that are commonly confused, thereby
reducing overall confusion and enhancing accuracy. Stud-
ies such as [20–23] highlight the importance of leveraging
the relationships between tasks to improve learning effi-
ciency and performance across various applications. This
approach aims to balance between task independence and
learning common representations. Regularizers can be
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used to establish task relationships in MTL by enforcing
shared structures or constraints across tasks, as discussed
in [24–26]. For example, by penalizing large differences
in model parameters for related tasks, a regularizer can
encourage the model to learn common features or rep-
resentations. This not only helps in sharing knowledge
among tasks but also in preventing overfitting by promot-
ing simpler, more generalizable models. This approach
is effective in scenarios where tasks are related to each
other but not identical, allowing the model to leverage
the underlying commonalities for improved performance
across tasks. The authors in [14] also present an effective
approach to recognizing modulation schemes in cognitive
radios using deep learning. Traditional methods for mod-
ulation recognition, while powerful, can struggle with the
dynamic conditions of real-world RF environments. This
research addresses these challenges by introducing aMTL
approach that utilizes a deep CNN to extract features nec-
essary for classifying different modulation schemes. A
summary of all related works in this area has been pre-
sented in Table 1.

2.2. VLC Waveform Design

The advancements and optimizations in VLC can be sig-
nificantly enhanced by employing a unified physical layer
waveform, such as the mixed-carrier communication
(MCC) [4] and unified physical layer (UniPHY) wave-
form [5]. This waveform is unique in its ability to in-
tegrate various waveforms, meeting the multifaceted re-
quirements of a VLC-enabled indoor flying network in-
cluding simultaneous localization, dimming, control, and
data transfer. This integration is pivotal for constructing
waveforms that are central to robust and versatile commu-
nication capabilities within complex environments. The
VLC waveform’s architectural design discussed in this pa-
per is based on the UniPHY waveform [5] and uniquely
integrates time-domain optical-orthogonal frequency divi-
sion multiplexing (optical-OFDM) with modulation tech-
niques such as BPM and BePSK, ensuring that these com-
ponents do not interfere with each other [27,28]. This in-
tegration also provides comprehensive dimming support
through pulse width modulation (PWM) [29]. The VLC
waveform includes a series of pulses defined by a fixed
amplitude ratio of the peak-to-peak voltage of the beacon
waveform, with varying duty cycles proportional to the
sampling amplitudes of the analog sinusoidal signal. A
representation of a frame of the VLC waveform is given
in Figure 1. The structure of the VLC waveform is orga-
nized into frames, each comprising a predetermined num-
ber of slots that accommodate time-series OFDM sym-
bols. These slots are governed by L1 bits, resulting in 2L1

slots per frame. Each slot encapsulates a virtual PWM
wave that embeds C2 OFDM symbols within its enve-
lope, adhering to a predefined duty cycle (D) that defines
its high and low states. A distinct slot within each frame
is specifically designated for the beacon signal, crucial for
the execution of the two demodulation tasks of BPM and
BePSK:

• Beacon Position Modulation: This task involves
modulating the position of the beacon signal within
the transmission frame. Similar to pulse position
modulation (PPM), by varying the position of the
beacon, information is encoded spatially within the
frame, allowing for enhanced data transmission ca-
pabilities and precise localization functionalities.

• Beacon Phase Shift Keying: In this task, the infor-
mation is encoded by varying the phase of the bea-
con signal. This modulation technique allows for the
transmission of data through phase shifts, providing
an additional layer of robustness and complexity to
the data communication process.

Figure 1: Frame design of the VLC waveform.

The beacon’s duty cycle is variable, capable of con-
veying information throughBePSKmodulation determined
by L2 bits. The sinusoidal wave’s phase directly influ-
ences the PWM pulse duty cycle within the beacon slot,
creating 2L2 distinct phases and providing dimming capa-
bility to the waveform. The flexibility of the VLC wave-
form is showcased by the range of parameters in Table 2.

The performance of VLC systems depends on the ef-
ficient encoding and decoding of the VLCwaveform, with
parameters such as BPM and BePSK playing pivotal roles
in defining the system’s overall functionality and perfor-
mance. The complexities inherent in managing these pa-
rameters underscore the necessity for employing sophis-
ticated MTL models designed to optimize demodulation
tasks, thereby reducing complexity and enhancing system
performance.

2.3. Methodology

The methodology of this research involves applying MTL
for the demodulation tasks of BPM and BePSK. The sys-
tem model is based on the end-to-end learning framework
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Table 1: Comparison of related works on application of MTL.

Model Tasks Architecture

MoDANet Automatic Modulation Classification,
Direction of Arrival Estimation Deep CNN

RadCom Modulation Classification, Signal
Classification Deep CNN

Cross-Stitch Model
(This work)

Beacon Position Modulation
Classification, Beacon Phase Shift
Keying Classification (Demodulation
Tasks)

Deep CNN

Table 2: Flexible parameters of the VLC waveform.

Parameter Value(s)

BPM Orders (L1) 2, 4, 8, 16

BePSK Orders (L2) 2, 4

Dimming duty cycle (D) 50%

QAM orders (M) 4, 8, 16, 32

Number of OFDM symbols per PWM (C2) 6

Number of OFDM subcarriers per symbol (N) 64

AWGN SNR value 10 dB

introduced by the authors in [4]. An autoencoder is em-
ployed which takes input bits at the encoder and then mod-
ulates them using the PWM technique to provide dimming
support. The modulated signal then passes through an op-
tical channel and is received at the decoder where it is
demodulated using classifiers for BPM and BePSK. This
work aims at employing a MTL framework in place of
the two separately trained STL models discussed in [4]. A
concise depiction of the systemmodel is given in Figure 2.

Figure 2: System model: The encoder performs modulation by
using input bits, which are demodulated at the decoder by using
MTL for BPM and BePSK classification.

A key aspect of this study’s methodology is the im-
plementation of ablation studies, which systematically test
various model configurations to pinpoint the most effec-
tive architectural elements that enhance performance and
manage complexity. These studies help encompass and
track the performance variations because of the number of
shared and task-specific layers, adjustments in the place-

Figure 3: Cross-stitch model.
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ment and configuration of specialized layers, or other ar-
chitectural modifications. The first implementation is the
residual network (RN) model, inspired by the MoDANet
architecture detailed in [17]. Like the MoDANet model,
which utilizes multiple residual modules to counter the
vanishing gradient problem and employs a Y-shaped con-
nection for shared learning, the RNmodel integrates resid-
ual blocks to bolster deep learning capabilities. These
blocks utilize skip connections, enhancing the gradient
flow through extended networks and thereby augment-
ing the learning process for deep models. Following the
RN model, the subsequent implementation is the hard pa-
rameter sharing (HPS) model, derived from principles
detailed in [18]. This model utilizes a hard parameter-
sharing strategy, distributing hidden layers across tasks
while maintaining task-specific layers. This strategy pro-
motes a shared representation that encompasses all tasks,
thus enhancing generalization and learning efficiency. It
seeks to achieve an ideal balance between shared learn-
ing and task-specific adaptability, potentially reducing
the complexity associated with managing multiple learn-
ing tasks simultaneously. The final architectural iteration
is the cross-stitch (CS) model, and is showed in Figure 3.
This model incorporates the cross-stitch unit introduced
in [30]. This unit facilitates an optimal blend of shared
and task-specific representations by dynamically modu-
lating the mixing of features from different tasks through
a learnable linear combination parameterized by a matrix.
The cross-stitch unit allows the model to effectively gen-
eralize across tasks, boosting performance by exploiting
inter-task commonalities and distinctions.

The ablation studies in this research are designed
to reduce the models’ complexity while maintaining or
enhancing their performance. Systematically modifying
and evaluating each model variant helps to uncover the
configurations that best balance performance with compu-
tational efficiency. This process is crucial for develop-
ing models that are not only effective in their task per-
formance but also suitable for deployment on resource-
constrained platforms, enhancing their practical applica-
bility in real-world VLC applications. A detailed exami-
nation of the evolution of these models sets the stage for
the subsequent presentation of results, which will discuss
the effectiveness of these models in reducing complexity
and enhancing performance comprehensively.

3. Results

For training each model, the input consists of VLC wave-
form frames configured for the two tasks of BPM and
BePSK classification. Specifically, the input layer size
matches the frame dimensions of a 4-BPM, 2-BePSK, 16-

QAM waveform, featuring 6 OFDM symbols per PWM
pulse, 2 PWM pulses per slot, and a total of 4 slots in a
frame. The dataset includes a total of 10,000 frames, di-
vided into an 80%-20% split for training and validation.
Training is conducted on a system equipped with an Intel
i5-12600KF processor@ 4.2GHz, with 32 GB of memory,
and an NVIDIA RTX 3070 GPU with 8 GB VRAM. The
models are trained over 20 epochs using a learning rate
of 0.001, a batch size of 64, and the Adam optimizer fa-
cilitating the optimization process. These training param-
eters are aligned with those used in [4] to ensure consis-
tency and enable fair comparisons between the multi-task
and single-task models for the two demodulation tasks of
BPMandBePSK. The performance of the RNmodel, HPS
model, and CS model is evaluated using metrics such as
accuracy, loss, and convergence rate. The performance of
MTL and STL in the context of joint communication and
sensing is also compared. The performance comparison
among the three iterations of MTL, and STL is summa-
rized in Table 3.

The performance comparison across the STL, RN,
HPS and CS models reveals significant variations in ac-
curacy, loss, and convergence rates. STL models, serving
as benchmarks, demonstrate high accuracy with BPM and
BePSK tasks achieving 98% and 99% respectively, with
rapid convergence within 6 and 7 epochs. In contrast, the
RN model underperform and do not reach convergence
due to the overfitting problem, with notably lower accu-
racy of 78% for BPM and 81% for BePSK, and higher
losses of 0.27 and 0.29 respectively, indicating unstable
training. Conversely, both the HPS and CSmodels exhibit
superior performance, achieving near-perfect accuracy of
99% across tasks. These models not only match the STL
in accuracy but also demonstrate comparable loss values,
with the CS model slightly outperforming the HPS in the
BePSK task by achieving a lower loss of 0.01 compared to
0.02. Additionally, both models converge efficiently due
to the convolutional layers in both task-specific branches
being effective at extracting relevant features from the
waveform data. Efficient feature extraction helps to speed
up the convergence and enables the model to have a rapid
learning process. The CS model shows a convergence in
the BePSK task at 10 epochs compared to 8 epochs for the
HPS model, indicating a very minor yet acceptable trade-
off between model complexity and speed of learning. The
performance graphs for the CS model for different orders
of BPM and BePSK are showcased in Figures 4 and 5
respectively. The performance of the CS model is also
shown by the results achieved in the confusion matrices
for 4-BPM and 2-BePSK, as shown in Figure 6. The di-
agonal elements are significantly larger in count, as com-
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Table 3: Model performance comparison.

Model Task Accuracy Loss Convergence
(Epoch)

STL BPM
BePSK

98%
99%

0.05
0.02

6
7

RN BPM
BePSK

78%
81%

0.27
0.29

- *
- *

HPS BPM
BePSK

99%
99%

0.02
0.02

7
8

CS BPM
BePSK

99%
99%

0.02
0.01

8
10

* The RN model did not achieve convergence due to overfitting issues.

pared to off-diagonal elements, which validates the high
accuracy attained during training.

Figure 4: BPM training results.

Figure 5: BePSK training results.

The complexity of the models, as summarized in Ta-
ble 4, is quantified using two metrics: number of trainable
parameters (provided by the Tensorflow model summary)
and floating-point operations per second (FLOPs). A
lower number in both these metrics illustrates a clear trend
towards more efficient model architectures. The STL
model utilizes a relatively moderate number of computa-
tional resources with 2.91 million parameters and 1.07G
FLOPs, as compared to the RN model, which shows a

substantial increase in complexity, requiring 9.23 million
parameters and 3.61G FLOPs. This is indicative of its
more resource-intensive nature that may not translate effi-
ciently into practical applications, especially in resource-
constrained environments. The HPS model significantly
reduces complexity over the RN model down to 4.22 mil-
lion parameters and 1.99GFLOPs, balancing performance
with computational demands more effectively. The most
notable improvement is observed in the CS model, which
not only maintains high performance levels, which are
comparable to the STL models, but it also drastically re-
duces the model’s resource requirements to only 2.15 mil-
lion parameters and 0.96G FLOPs, making it the most
efficient model in terms of both parameter count and com-
putational overhead. This reduction in complexity is par-
ticularly beneficial for deployment in scenarios where
computational resources are limited, such as mobile or
embedded systems, without sacrificing the accuracy or
functionality of the models.

4. Discussion

This research demonstrates the effectiveness of MTL ar-
chitectures in reducing the computational complexity re-
quired for demodulating VLC waveforms. Notably, the
CS model emerges as the most efficient, achieving com-
parable or superior performance metrics to the STL mod-
els while significantly minimizing both trainable param-
eters and computational overhead. These findings under-
score the potential of MTL to enhance the scalability and
efficiency of VLC systems, making it an attractive ap-
proach for real-world applications where computational
resources are limited. The results suggest that the inte-
gration of advanced MTL techniques can lead to more
robust and adaptable communication systems. The com-
prehensive evaluation of the models indicates a clear su-
periority of the CS model over both the STL models and
its predecessors within the MTL framework. In terms
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Table 4: Model complexity comparison.

Model Trainable Parameters FLOPs

STL 2.91M 1.07G

RN 9.23M 3.61G

HPS 4.22M 1.99G

CS 2.15M 0.96G

of performance, the CS model matches the high accu-
racy bench- marks set by the STL models. It achieves
this with comparatively lower losses and excels in reduc-
ing computational complexity, manifested in a marked
decrease in both trainable parameters and FLOPs. It of-
fers a nearly 26% reduction in parameters and a 10% re-
duction in FLOPs compared to the STL model, and even
more substantial gains over the RN and HPSmodels. This
dual advantage of high performance coupled with reduced
complexity underscores the CS model’s enhanced suit-
ability for practical applications, particularly in resource-
constrained environments where efficiency and perfor-
mance are paramount. Thus, the CS model showcases the
potential of advanced MTL strategies to drive significant
advancements in VLC and similar technologies.

5. Conclusions

The findings of this study suggest that MTL not only re-
duces the computational demands of complex VLC sys-
tems but also maintains high accuracy in critical demodu-
lation tasks. This balance of efficiency and performance
positions MTL as a transformative approach for future
VLC applications, where computational resource limita-
tions are significant constraints. The promising results
invite further exploration into the application of MTL ar-
chitectures across different domains of communication
technologies. Future research could focus on adapting
these MTL models for other forms of digital communica-
tion, such as RF, to explore the universal applicability of
the architectural innovations.
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