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Abstract

Effective indoor navigation in the presence of dynamic obstacles is crucial for mobile robots. Previous research on deep reinforce-
ment learning (DRL) for robot navigation has primarily focused on expanding neural network (NN) architectures and optimizing
hardware setups. However, the impact of other critical factors, such as backward motion enablement, frame stacking buffer size,
and the design of the behavioral reward function, on DRL-based navigation remains relatively unexplored. To address this gap, we
present a comprehensive analysis of these elements and their effects on the navigation capabilities of a DRL-controlled mobile robot.
In our study, we developed a mobile robot platform and a Robot Operating System (ROS) 2-based DRL navigation stack. Through
extensive simulations and real-world experiments, we demonstrated the impact of these factors on the navigation of mobile robots.
Our findings reveal that our proposed agent achieves state-of-the-art performance in terms of navigation accuracy and efficiency.
Notably, we identified the significance of backward motion enablement and a carefully designed behavioral reward function in
enhancing the robot’s navigation abilities. The insights gained from this research contribute to advancing the field of DRL-based
robot navigation by uncovering the influence of crucial elements and providing valuable guidelines for designing robust navigation
systems.
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I. Introduction

It could be deduced that in an environment where au-
tonomous robots are becoming integral to various sectors,
the development of sophisticated and robust robotic nav-
igation systems is imperative. Traditional motion plan-
ners and localization techniques such as Simultaneous Lo-
calization and Mapping (SLAM) [1], Dynamic Window
Approach (DWA) [2], and Adaptive Monte Carlo Local-
ization (AMCL) [3], rely heavily on predefined feature
extraction and prior environmental maps. Despite being
effective, these methods have considerable limitations as
they require extensive parameter tuning and have diffi-
culty adapting to new environments without further mod-
ifications. [4,5]. Additionally, these traditional systems
are compartmentalized, with separate modules for tasks

such as vision, planning, and control, resulting in subop-
timal overall performance due to isolated optimization of
each module [6].

Recently, the application of deep learning in au-
tonomous navigation of unmanned ground vehicles (UGVs)
has surged [7—11]. Deep learning’s ability to translate raw
inputs into precise steering commands enables an integrated,
end-to-end system, which is proficient in both motion plan-
ning and obstacle avoidance. Compared to traditional meth-
ods, classical machine learning techniques, such as super-
vised learning, reduce the need for hand-tuning and adapt
better to unfamiliar environments. However, these methods
also have limitations since data collection for supervised
learning is labor-intensive, and the final system’s effective-
ness relies heavily on the quality of the dataset. [12,13].
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Deep reinforcement learning (DRL) addresses these
limitations by providing a framework to train models
through direct environmental feedback, eliminating the
need for extensive data collection. DRL has gained sig-
nificant traction in recent years and is widely used in au-
tonomous navigation research for both LiDAR and vision-
based systems [6,14,15]. Despite its benefits, DRL en-
counters challenges due to the costly and potentially haz-
ardous trial-and-error nature of data collection in real-
world environments. Therefore, agents are first trained in
simulations for efficient learning before being deployed
on physical robots. However, this approach introduces a
’reality gap,” as current simulators fail to perfectly repli-
cate the complexities of the physical world, leading to po-
tential discrepancies in agent behavior between simulated
and real environments [16].

A prevalent observation in most prior DRL naviga-
tion research is the lack of exploration into the effects of
various design decisions on mobile UGVs [6]. Many stud-
ies adhere to standard practices regarding hyperparame-
ters, sensor configuration, reward design, frame stacking,
and direction of motion. In contrast, this work challenges
these norms by analyzing the impact of these design el-
ements on the navigational performance of a UGV DRL
agent. To develop areliable, autonomous navigation agent
with dynamic obstacle avoidance capabilities, we assess
these elements within our novel framework.

Our framework, built on the Robot Operating Sys-
tem 2 (ROS 2) middleware suite [17] and the Gazebo sim-
ulator [18], extends standard forward-only motion to a full
range of motion and evaluates the benefits of backward
motion, particularly for dynamic obstacle evasion. By im-
plementing various frame stacking configurations, we as-
sess their influence on dynamic obstacle avoidance. Addi-
tionally, we introduce unique reward components to mit-
igate undesirable behaviors, such as ’swaying,’ thereby
enhancing real-world applicability. The efficacy of our
system is validated in both novel simulation environments
and on a custom-built, physical mobile robot.

With this work, our primary goal is to provide the
research community with insightful design guidelines for
creating reliable DRL UGV navigation systems. To this
end, we make the following contributions:

1.  We develop an end-to-end framework for ROS 2
DRL-based UGV navigation, incorporating three
off-policy DRL algorithms.

2. We explore the impact of different off-policy algo-
rithms, hyperparameter configurations, and reward
functions on UGV navigation.

3. Weinvestigate the utility of frame stacking and back-
ward motion for effective dynamic obstacle avoid-
ance.

4. We validate the system in real-world scenarios, em-
ploying a custom-built mobile robot (Figure 1) navi-
gating in challenging environments with fast-moving
obstacles.
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Figure I: An overview of the robot hardware.

2. Related Work

In this section, we discuss the work related to the use of
DRL for robot navigation and obstacle avoidance.

2.1. Navigation

Significant advancements have been noted in the domain
of Deep Reinforcement Learning (DRL)-based navigation.
Among the initial research in this area, Duguleana et al.
were pioneers, combining Q-learning with a neural net-
work to develop a Deep Q-Network (DQN) motion plan-
ner, capable of executing three distinct actions i.e., mov-
ing forward, turning left, or turning right [19]. To reduce
the state space, the environment was segmented into eight
angular regions. This approach successfully managed nav-
igation in simple environments and established a founda-
tion for more complex DRL navigation research.

The following year, Tai et al. introduced a low-cost,
mapless DRL-based navigation system for mobile robots,
which mapped sparse Light Detection and Ranging (Li-
DAR) distance readings into continuous actions [20]. Ex-
periments in unseen environments with static obstacles
confirmed the model’s real-world transferability. How-
ever, due to a low laser count and a simplistic training en-
vironment, the model’s performance was impaired when
encountering dynamic obstacles.
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Further innovation came from Choi et al., who re-
placed the traditional 360° LiDAR with a 90° depth cam-
era and a state-of-the-art Long Short-Term Memory
(LSTM) network [21]. This combination outperformed
agents with a wide Field of View (FOV) but no mem-
ory. To bridge the simulation-reality gap, they employed
dynamics randomization, adding noise to scan readings,
robot velocity, and control frequency. This approach
made the model robust against unpredictable real-world
dynamics.

Surmann et al. took a different approach, designing
a system to simultaneously train multiple DRL agents us-
ing a lightweight 2D simulation, each in a unique environ-
ment [22]. However, their work did not include dynamic
obstacles and was not entirely collision-free. In contrast,
our work demonstrated that Gazebo could effectively train
an autonomous navigation agent with robust generaliza-
tion capabilities.

Nguyen Van et al. demonstrated the versatility of
DRL-based LiDAR navigation by applying it to differ-
ent robotic models, such as a four-wheel omnidirectional
robot [23]. Their simulation experiments demonstrated
the agent’s capability to navigate between waypoints while
avoiding stationary obstacles.

Recently, Weerakoon et al. developed a navigation
robot using 3D LiDAR and elevation maps for reliable
trajectory planning in uneven outdoor environments [24].
Their network used a Convolutional Block Attention Mod-
ule to identify regions with reduced robot stability. Al-
though their method had a high success rate compared to
the dynamic window approach, the robot struggled with
steep ditches and surface boundaries, requiring additional
depth sensors and RGB cameras.

2.2. Obstacle Avoidance

In the rapidly evolving field of autonomous navigation, a
variety of methodologies employing deep reinforcement
learning (DRL) for obstacle avoidance have emerged. One
novel approach by Wang et al. [25] developed Deep Max-
Pain, a modular DRL method with separate policies for
reward and punishment, inspired by the operational mech-
anisms of the animal brain. They proposed a state-value
dependent weighting scheme based on a Boltzmann dis-
tribution to balance the ratio between the two signals for
the final joint policy. This approach used both LiDAR
scans and RGB-camera images, achieving superior per-
formance compared to DQN in both simulations and real
robots.

DRL navigation approaches incorporating global in-
formation from high-level planners have been proposed
by Jin et al. [26], Kato et al. [27] and Gao et al. [28]. Kato

et al. [27] developed a long-range DRL navigation sys-
tem by pairing a local DDQN agent with a topological
map global planner. Gao et al. [28] proposed a similar
approach, combining TD3 with Probabilistic Road Maps
(PRM) to create an indoor long-range motion planner ca-
pable of generalizing to larger, unseen environments. To
improve DRL agents from a practical standpoint, offline
DRL has been proposed [14,29].

However, in complex environments characterized
by continuous and large-scale obstacles, DRL navigation
may struggle to escape local optima. In such scenarios,
Liu et al. [30] proposed integrating structural RNNs into a
PPO-based neural network to handle unpredictable human
trajectories in dense crowds. This system, incorporating
two separate RNNs for spatial and temporal relations with
nearby humans, demonstrated superior performance com-
pared to ORCA, handling a significant number of humans.
However, a comparison with other DRL approaches has
yet to be conducted.

Simultaneously, Gao et al. [31] focused on irregular
obstacle detection by fusing laser scan and RGB camera
data. Their method used a novel depth slicing technique
to acquire pseudo-laser data encoding both depth and se-
mantic information, maximizing the advantages of both
data types.

Efficiency improvements in the training phase for
depth camera D3QN-based autonomous navigation were
proposed by Ejaz et al. [32]. They employed techniques
such as layer normalization and the injection of Gaus-
sian noise into the fully connected layers to reduce com-
putational costs and stimulate exploration, leading to re-
duced training times. Recent work also explores the use
of event cameras to reduce latency [33] and improve night
vision [34].

The integration of domain-expert knowledge into
the DRL training process for mapless navigation has been
demonstrated by Corsi et al. [35]. This approach enhances
performance and mitigates undesired behaviors by incor-
porating scenario-based programming (SBP) constraints
into the cost function, allowing explicit constraints to be
directly embedded into the policy optimization process.

In contrast to the complex architectures proposed by
Liu et al. [30], Hoeller et al. [36] and Gao et al. [31], this
work seeks to establish a DRL indoor navigation system
that balances reliable performance and simplicity. Simi-
lar to Corsi et al. [35], we aim to enforce specific desired
behaviors, but instead of using manually designed SBP
constraints, we focus on developing an effective reward
function to address complex navigation scenarios.

This work also seeks to address the limitations in
real-world applications identified by Choi et al. [21], Liu
et al. [30], and Gao et al. [31], particularly regarding the
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disabling of backward motion and its impact on pedes-
trian movement speed and obstacle configurations. Our
robot is equipped with 360° LiDAR scans, enabling con-
tinuous monitoring of its full surroundings and anticipat-
ing obstacles from any direction, including those outside
the robot’s field of vision or approaching from behind.
Through real-world demonstrations, we aim to show that
this comprehensive sensing approach allows the robot to
navigate safely, even in the presence of fast-moving or
unpredictably moving obstacles.

3. System Overview

Here we provide an overview of the theory behind the sys-
tem and describe the various tools and methods used for
the experiments'.

3.1. Local Navigation

Our goal is to develop a reliable, mapless, and decentral-
ized motion planner for mobile robots. The robot must
navigate from the starting location to the goal while main-
taining a safe distance from any obstacles. Essentially, we
aim to find the following optimal translation function:

Q)

where, for each time step ¢, o; is the current set of readings
from raw sensor data, p; is the current estimated position
of the robot, and v;_; is the velocity of the robot during
the previous time step. The model is trained to approx-
imate this optimal translation function, directly mapping
the input observations to output action v;, which holds the
next velocity target for the robot.

Observation space. The observation space Oy consists
of N LiDAR distance readings spaced evenly over 360°
around the robot, where N is specified for each model.
To increase the robustness of the policy, we add Gaus-
sian noise to the laser distance readings to reduce the
simulation-to-reality gap. The laser scan inputs are nor-
malized to fall within the range of [0, 1]. Other inputs are
normalized to the range [—1, 1]. Furthermore, the distance
and angle to the goal are derived from odometry informa-
tion and concatenated with the LiDAR readings. Lastly,
the previous linear and angular velocities of the robot are
included to form the entire observation set.

Action space. The action space A is a two-dimensional
vector that defines both the desired linear velocity and
angular velocity of the robot at each time step. Before
being sent to the motor control unit, both output veloci-

Ut = f(Ot,pt,Utfl)

IThe associated code can be accessed via
https://github.com/amjadmajid/ROS2-DRL-Turtlebot3-like-LIDAR-

Robot.

ties are fed through a tanh cell to obtain the normalized
range [—1, 1]. Depending on the model configuration, the
linear velocity ranges from zero velocity to maximum for-
ward velocity or from maximum backward velocity to
maximum forward velocity. The angular velocity always
ranges from maximum clockwise velocity to maximum
counter-clockwise velocity.

3.2. Materials & Methods

This section describes the tools and methods used for the
experiments in simulation and discusses the system archi-
tecture as a whole (Figure 2).

DRealLNav System
Gazebo |
Physical Robot
Jemd vel /scan
cma_vel IR0S 2| /odom
" DRL Agent
DRL action Node

Environment ROS 2
Policy

Train()

Node

rewarof ‘ dqn/ddpg/td3 }—D{ PyTorch
observation

Figure 2: System architecture for the navigation stack. The
nodes and communication layer are implemented using ROS2.
The DRL environment node provides an interface to facilitate
switching between the Gazebo simulation and the physical robot.

3.3. Simulator

Agents are trained in simulation to largely automate and
accelerate the training process without the risk of damag-
ing equipment. However, contemporary simulators can-
not perfectly model the complexity of physical properties,
leading to the simulation-to-reality gap [37]. This gap can
be partially mitigated by introducing noise into the simula-
tion to lower the dependency of the policy on the precision
of input data. Selecting a simulator involves trade-offs be-
tween performance, accuracy, and flexibility. We chose
the Gazebo simulator [18] for its balance between perfor-
mance, accuracy, and implementation speed. Gazebo is
a popular open-source 3D robotic simulator with a robust
physics engine and wide support for ROS, mobile robots,
and optical sensors.

3.3.1. Environment

Four different training and testing scenarios were built,
as showcased in Figure 3. The first scenario involves an
area of approximately 4.2 x 4.2 meters surrounded by
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walls with no dynamic obstacles, serving as a control sce-
nario. The second scenario involves no static obstacles
other than the perimeter walls and six dynamic obstacles
to test how well an agent can deal with dynamic obsta-
cles. The third scenario includes seven additional static
walls placed across the area and two dynamic obstacles,
forming the main scenario used in most experiments due
to its balanced difficulty. The fourth scenario is similar
to the third but with four additional dynamic obstacles,
functioning as the final and most challenging test for the
best-performing policies. Goal positions are designated
randomly from valid locations with a sufficient distance
margin to any obstacle.

Figure 3: The different stages used during training and evaluation
in simulation. TL: Stage 1, no obstacles (4.2 x 4.2 m), TR: Stage
2, six dynamic obstacles (4.2 x 4.2 m), BL: Stage 3, static and
two dynamic obstacles (6 x 6 m), BR: Stage 4, static and six
dynamic obstacles (6 x 6 m).

3.3.2. Training Setup

The policies are implemented using PyTorch and trained
on a computer equipped with an AMD Ryzen 9 5900HX
and CUDA-enabled RTX 3050 Ti GPU for approximately
40 hours. During the training process, the outcome per
episode and the average reward per episode are recorded
and visualized in a graph.

Each trained policy is evaluated for 100 episodes on
the same stage it was trained on unless specified otherwise.
During evaluation, the following metrics are collected for
all experiments:

. Success Rate - The percentage of trials in which the
robot reaches the goal.

. Collision (Static) - The percentage of trials in which
the robot collides with a static obstacle.

. Collision (Dynamic) - The percentage of trials in
which the robot collides with a dynamic obstacle.

. Timeout - The percentage of trials in which none of
the other outcomes happen within the specified time
limit.

. Average Distance - The traveled distance in meters
averaged over all successful trials.

. Average Time - The elapsed time in seconds from

start to goal averaged over all successful trials.

For some experiments, the following additional met-
ric is also collected:

. Sway Index - A measure of how frequently the
robot changes its angular velocity, possibly causing
the robot to sway.

3.4. Physical System

As part of the DRL autonomous navigation platform, an
actual physical robot was developed to employ the poli-
cies trained in simulation for real-world autonomous nav-
igation. This section provides an overview of the robot’s
hardware configuration, designed with two key character-
istics in mind: cost and customizability. The goal is to cre-
ate an inexpensive robot while maintaining the ability to
scale its computational capabilities according to the task’s
demands. Below are the details of the hardware compo-
nents:

Mainboard. The main controller for our system is the
Jetson Nano board developed by Nvidia, running Linux
Ubuntu 20.04. The Jetson Nano features a dedicated 128-
core Maxwell GPU capable of efficiently running neural
networks while preserving battery power. The board has
sufficient computational power to run the trained DRL
policies and is available for less than €100 per unit. Ad-
ditionally, the Jetson module offers flexibility as it can be
easily swapped out for other modules from the Nvidia Jet-
son family.

LiDAR. The current setup includes the S1 RPLIDAR
laser range scanner from Slamtec. The S1 RPLIDAR of-
fers up to 720 scan samples distributed over 360° around
the robot at a maximum frequency of up to 15 Hz. While
the S1 RPLIDAR is relatively expensive at approximately
€600, it can be replaced with cheaper variants such as the
RPLIDAR Al, sold at €100. The less expensive RPLI-
DARs offer sufficient range, accuracy, and sampling fre-
quency for indoor navigation. For our application, we
only require 40 scan samples at a sampling frequency of
10 Hz with a maximum range of 3.5 meters. We modi-
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fied the RPLIDAR driver software to reduce the overall
system latency by only using the 40 samples of interest.
Low-level controller. To simplify the design process, an
Arduino Mega 2560 is added as a second controller for
the robot’s low-level functions. The Arduino Mega han-
dles the PWM signals for motor control and manages the
interrupt handling for the tachometers. It is connected to
the Jetson Nano via a UART channel, over which ROS
messages are sent using the Rosserial Arduino ROS pack-
age.

Motors and tachometer. The robot uses two Chihai
Gm25-370 300 RPM DC gear motors with integrated
interrupt-based magnetic encoders functioning as tachome-
ters. The tachometers provide odometry to the robot based
on kinematic calculations as described in [38]. The mo-
tors are connected to the system through an L298N DC
motor driver module, which regulates the motors’ speed
and direction.

Power and Chassis. The entire system is powered by
three rechargeable 4.2 V Li-Po batteries connected to two
DC-DC boost converter modules, providing a 5V power
source for the Jetson Nano and a 12V power source for
the Arduino Mega and L298N motor driver module. The
chassis is 3D printed.

4. Results

4.1. Navigation Performance

This section examines the impact of different hyperparam-
eter and laser scan configurations on navigation perfor-
mance. It also compares various off-policy algorithms
and evaluates the best-performing policy across different
stages to demonstrate the system’s generalization capabil-

1ty.
4.2. Hyperparameter Tuning

As DDPG forms the basis for most off-policy actor-critic
algorithms, we start our experiments using the DDPG al-
gorithm to evaluate and select hyperparameter values that
are common to all actor-critic algorithms. While find-
ing the exact optimal hyperparameter configuration is dif-
ficult and forms a research field of its own [39—41], by
heuristically selecting between extreme values and eval-
uating the effect on the agent’s navigation performance,
we can achieve a sufficiently high success rate. We grad-
ually adjust each parameter based on preceding results
and then retrain the policy under the same conditions.
Table 1 shows the results of the first experiment con-
ducted in stage 3 with the DDPG hyperparameter con-
figurations and corresponding evaluation metrics. Ad-

ditionally, Figure 4 shows the reward scores over time
during training, averaging over 100 episodes. The initial
parameters for model DDPG 0 were based on [20] and the
baseline implementations by OpenAlI®.

2000

0

—2000

—-4000

Reward

(batchsize/buffersize)

—-6000 —— DDPG 1 (128/1e+5)
DDPG 2 (128/1e+6)
—-8000 —— DDPG 3 (512/1e+6)
—— DDPG 4 (1024/1e+6)

0 500 1000 1500 2000 2500 3000 3500 4000

Episode

Figure 4: The average reward per 100 episodes for different batch
size and replay buffer size configurations in stage 3 (Figure 3).

First, DDPG 0 is evaluated in stage 1 with no obsta-
cles as a control condition, where it successfully reaches
the goal in 100% of the trials, confirming the expected be-
havior. Next, the model is evaluated in stage 3, which con-
tains static and dynamic obstacles. In this stage, the model
achieved only a 69% success rate, with most failures be-
ing static collisions. Evidently, the current configuration
is insufficient for our environment setup, necessitating fur-
ther investigation of the hyperparameters to improve per-
formance. We increased the laser scan density from 10
to 40 individual samples for DDPG 1, as the initial con-
figuration’s laser scan samples were too sparse, impeding
the agent’s ability to detect obstacles in time. Although
this adjustment initially showed no improvement, we hy-
pothesize that as the other hyperparameters become more
finely tuned, the increased scan samples will enhance per-
formance.

Replay Buffer Size. Analyzing the reward graph for
DDPG 1 in Figure 4, we observe that while the agent
learns a viable policy, it remains unstable throughout the
training session, with large oscillations and drops in the
reward curve. The first significant drop in performance
occurs around the 1000-episode mark, coinciding with
the experience replay buffer filling up. Once the replay
buffer is full, old experiences are replaced by newer en-
tries. If the replay buffer is too small, the policy may
forget important previous experiences and rely only on
the most recent data, potentially causing over-fitting and
catastrophic forgetting [42]. To address this, we increased
the size of the replay buffer for DDPG 2 to stabilize the
learning process and prevent significant policy relapses.
Figure 4 suggests that the increased buffer size positively

Zhttps://github.com/openai/baselines
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Table I:

Turtlebot3 navigation performance for DDPG configurations in stage 3.

BS=Batch Size, RB=Replay Buffer Size,

LR=Learning Rate, CS=Collision, CD=Collision Dynamic, TO=Timeout.

Training Evaluation
Model BS RB Discount LR Success CS CD TO Dist Time Speed
DDPG 1 instage1 128  let+5 0.99 le-3 100 0 0 0 345 20.11 0.78
DDPG 1 128  let5 0.99 le-3 67 31 0 2 344 1622 0.96
DDPG 2 128  let6 0.99 le-3 75 13 7 5 394 17.12 099
DDPG 3 512 let6 0.99 le-3 92 1 6 1 354 16.11 0.99
DDPG 4 1024 let6 0.99 le-3 97 0 3 0 331 1635 092
DDPG 5 1024  let6 0.99 3e-4 929 0 1 0 3.02 1567 0.88
DDPG 6 1024  let6 0.99 le-4 94 0 5 1 405 1897 0.97
DDPG 7 1024  let6 0.999 3e-4 88 1 11 0 494 21.13 1.00

affects training stability, as the reward curve for DDPG 2
shows reduced oscillations and drops, along with a higher
overall reward. Table 1 confirms the improved perfor-
mance, with a significant reduction in static collisions for
DDPG 2. We do not further increase the buffer size, as it
should be limited to reduce the probability of storing irrel-
evant experiences. A larger replay buffer may store older,
less relevant experiences from earlier, less efficient policy
iterations, ultimately slowing down the training process.
Batch Size. The batch size is another crucial hyperparam-
eter that affects both the speed and stability of the training
process. A larger batch size increases computational par-
allelism, allowing more samples to be processed per sec-
ond, and provides a better estimate of the error gradient by
processing more samples per step [43,44]. Consequently,
larger batch sizes typically result in better optimization of
the objective function and enhanced stability. However,
this comes at the expense of slower convergence due to the
increased number of samples being processed. However,
larger batch sizes can also lead to poor generalization, re-
quire a larger memory footprint, and necessitate additional
processing power to maintain smooth training.

In their 2017 work, Tai et al. [20] configured a batch
size of 128 per training step. Since then, the computa-
tional capacity of machines has improved, and machine
learning software libraries have been further optimized,
making it worthwhile to explore larger batch sizes for im-
proved stability and convergence. Figure 4 shows the av-
erage reward during training for different batch sizes. The
graph reveals that a higher batch size significantly reduces
fluctuations in the reward curve, improving training stabil-
ity. The highest batch size, DDPG 4, results in better per-
formance and a more favorable reward curve compared to
the other configurations, as it processes more samples per
timestep, guiding it toward better optimization. We fix the
batch size at 1024 for the remaining experiments.

Learning Rate. Lastly, the learning rate and tau parame-
ter are critical factors affecting stability and training speed.
It is generally recommended to start with a larger learn-
ing rate and gradually decrease it until the best result is
achieved [43]. A larger learning rate allows the model to
learn faster but risks converging early to a sub-optimal so-
lution or not converging at all, whereas a smaller learning
rate provides more stability at the expense of longer train-
ing times.

2000
0
k-]
S 2000
H
]
o
—-4000 (batchsize/buffersize)
—— DDPG 4 (Ir=0.001)
DDPG 5 (Ir=0.0003)
—6000 —— DDPG 6 (Ir=0.0001)

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

Figure 5: The average reward per 100 episodes for different learn-
ing rates in stage 3.

Upon examining the reward graph for the different
learning rates in Figure 5, it is not immediately clear which
model performs best, as some models show a downward
trend in the reward graph later in the training process.
However, DDPG appears to deliver the most stable re-
sults and achieves the highest average reward. Although
a lower learning rate might eventually lead to better opti-
mization with more training time, part of the objective is
to balance performance with training duration. Therefore,
we have constrained the training period to 40 hours. Dur-
ing evaluation, DDPG 4 achieved a success rate of 97%.
Lowering the learning rate slightly further optimized the
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solution for DDPG 5, resulting in a success rate of 99%
and lower averages for both distance and time. Further
decreasing the learning rate for DDPG 6 did not yield any
additional performance improvements. Thus, the learning
rate and tau parameters are fixed at 3e—4.

4.2.1. LiDAR Configuration

After establishing a set of hyperparameters with accept-
able performance, we turned our attention to the number
of scan samples and their effect on obstacle avoidance.
Table 2 shows the evaluation results for several DDPG
policies with different laser scan densities tested in stage 3.
The laser scans are distributed evenly across 360° around
the robot. For the current environment, configurations
with fewer than 40 scan samples severely deteriorate the
agent’s performance. This issue arises from the shapes
and dimensions of the obstacles used in the simulation.
Without a sufficiently high scan density, the agent can-
not reliably detect the corners of static obstacles, often re-
sulting in collisions when attempting to maneuver around
the endpoints of walls. Additionally, lower scan densi-
ties may cause dynamic obstacles to fall between adjacent
scan points, rendering them undetectable until they are in
close proximity to the agent, thus complicating obstacle
avoidance.

With 40 laser scan samples, the agent can detect
obstacles early enough to avoid collisions and success-
fully navigate the environment, resulting in a 94% success
rate during evaluation. For the current environment set-
ting, configurations with more than 40 scan samples do
not seem to benefit the agent, resulting in either no sig-
nificant difference or slightly worse performance. Con-
figurations with fewer scan samples reduce the number
of inputs for the neural network, simplifying the learned
policy. Among the best-performing models, the config-
uration with 40 scan samples also gives the best perfor-
mance in terms of average distance and time per episode.
Figure 6 shows the average reward graphs for the DDPG
models with different scan densities, which align with the
evaluation results. Around the 1500-episode mark, the
difference in performance becomes evident as the rewards
for policies with lower scan densities stagnate. The other
policies follow a fairly similar curve, with the 40-sample
configuration reaching the highest average reward.

It is important to note that the minimum detectable
obstacle size depends on the number of scan samples.
With the current configuration, some smaller obstacles,
such as table legs, might not be detected when the robot is
still far away. Different environment settings with various
obstacle sizes might require different scan sample den-
sities to achieve optimal performance. However, given

that additional laser scans provide no significant benefit
for our current environment setting, we continue with the
40-scan sample configuration to keep the network input
dimensions to a minimum.
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Figure 6: The average reward per 100 episodes for different
DDPG laser scan densities in stage 3.

4.3. Algorithm Selection

Off-policy algorithms like DQN [45], DDPG [46,47],
and TD3 [48] decouple the experience collection and
training process. This allows the agent to explore and
optimize simultaneously, reusing previous experiences
for greater efficiency. DQN uses a deep neural network
(DNN) to approximate the Q-function for complex prob-
lems. DDPG, designed for continuous environments, fea-
tures two DNNs: an actor proposing actions and a critic
determining their quality. TD3 improves on DDPG by
introducing a second Q-function and adding noise to tar-
get actions to reduce the overestimation of Q-values. It
also updates the policy network less frequently, allowing
Q-function minimization before generating Q-values for
policy updates.

To determine which off-policy DRL algorithm is
best suited for our application, we trained separate policies
for DQN, DDPG, and TD3 with the same configuration
and compared the results. Table 3 shows the evaluation re-
sults for the three different algorithms. As expected, DQN
performs the worst since it is designed for discrete ac-
tion spaces, whereas the navigation problem corresponds
to a continuous domain. DDPG achieves a much higher
success rate as it is tailored for continuous action spaces
and allows for finer movement control, resulting in fewer
dynamic collisions and timeouts. Unsurprisingly, TD3
achieves the highest success rate as it is an improved it-
eration of DDPG. However, TD3 takes a slightly more
conservative approach, with a lower speed and greater
average distance traveled.

Figure 7 shows the reward curve for each of the algo-
rithms collected during training. The reward curves cor-
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Table 2: Turtlebot3 navigation performance for DDPG configurations in simulation stage 3.

Training Evaluation
Model Scans Success CS CD TO Avg. Dist Avg. Time
s10 10 44 36 20 0 2.11 13.51
s20 20 54 37 9 0 2.62 14.82
s40 40 94 0 5 1 4.05 19.13
s120 120 91 0 9 0 4.32 20.46
s360 360 91 1 7 1 4.63 21.86
s720 720 87 9 3 1 4.22 19.56
Table 3: Navigation performance for different DRL algorithms in stage 4.

Algorithm Success CS CD TO Avg. Dist Avg. Time Speed
DQN 79 1 10 10 4.01 20.27 0.90
DDPG 94 0 6 0 3.93 19.93 0.90

TD3 97 0 2 1 4.83 25.07 0.88

respond to the evaluation results, with TD3 achieving the
highest overall score, although the difference with DDPG
is small. DQN training also appears slightly more unsta-
ble, as the average reward drops significantly at some
points. Given that TD3 demonstrates the best perfor-
mance without increasing training time, we chose it as
the algorithm for the remaining experiments.
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Figure 7: The average reward per 100 episodes for different DRL
algorithms in stage 4.

4.4. Generalization

After completing the reward function design and tuning
the hyperparameters, the best-performing TD3 policy is
evaluated in an unseen scenario with different dimen-
sions and features to validate the model’s generalizabil-
ity. Table 4 shows the performance of the TD3 policy

in different scenarios. Stage 5 (Figure 8) simulates a re-
alistic house environment in an area of 15 x 10 meters,
significantly larger than the training stage of 6 x 6 meters.
Additionally, stage 5 features multiple differently shaped
static obstacles resembling common household objects.

Figure 8: Stage 5 (15 x 10 m) features larger dimensions than
seen during training to verify the generalizability of the agent.

During the evaluation, the policy achieved a 94%
success rate in stage 5. Of the failed trials, 82% were ter-
minated due to timeouts, while only 18% were due to colli-
sions. The high incidence of timeouts can be attributed to
the larger area of stage 5, which includes extended contigu-
ous obstacles that sometimes cause the robot to become
ensnared in a loop, repeatedly navigating the same region.
Since the robot lacks memory capability, it does not recog-
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Table 4: Navigation performance for the best-performing TD3 policy trained in stage 4 and tested in different stages.

Stage Success CS CD TO Avg. Dist Avg. Time Avg. Speed
41 100 0 0 0 3.90 19.00 0.93
4 97 0 2 1 4.83 25.07 0.88
2 94 0 5 1 2.95 14.53 0.92
5 94 1 0 5 11.78 55.51 0.96

! With no dynamic obstacles.

nize the repeating trajectory, causing it to repeat the same
circular route until timeout. Additionally, during training,
the LiDAR sensor’s range is limited to a maximum of 3.5
meters, a distance rarely exceeded in the training stage. In
stage 5, however, distance readings often reach larger val-
ues. Therefore, additional work is required to ensure opti-
mal performance in larger environments, which is beyond
the scope of this paper.

4.4.1. Dynamic Obstacles

In the previous section, we demonstrated that the trained
policy can achieve a success rate of up to 97% in stage 3.
According to the evaluation results, most of the remain-
ing failures are due to collisions with dynamic obstacles.
In fact, Table 4 shows that the TD3 policy can achieve a
100% success rate in stage 2 when all dynamic obstacles
are removed. It is important to note that static collisions
are more likely to occur in scenarios that include dynamic
obstacles, as they may cause the robot to steer into static
obstacles while attempting to avoid a dynamic one.

Dynamic obstacles present a more challenging prob-
lem for obstacle avoidance as they require the agent to
have a temporal understanding of the environment and
consider the trajectory of moving obstacles. Observations
of the agent in action suggest that dynamic collisions are
likely due to the agent’s inability to process the relation-
ship between consecutive scan frames. Since the agent
processes only a single frame of LiDAR distance read-
ings per step, it cannot distinguish between moving and
static obstacles or deduce the velocity and direction of a
dynamic obstacle. Moreover, interactions with dynamic
obstacles generally occur less frequently than with static
obstacles, causing the policy to be more biased towards
handling static obstacles. As a result, when approaching a
dynamic obstacle, the agent tends to steer away at the last
moment, similar to its strategy for avoiding static walls.
This approach works for static obstacles, but dynamic ob-
stacles require a different strategy due to their added ve-
locity, giving the agent less time to respond and increasing
the probability of collision.

To address this, we move from stage 3 to stage 4
(Figure 3), which includes four additional dynamic obsta-
cles to increase the number of interactions with dynamic
obstacles and better train the policy for dynamic obstacle
avoidance.

In an attempt to reduce the number of dynamic col-
lisions, we investigated different methods and evaluated
their impact on dynamic obstacle avoidance and overall
performance, as discussed below.

4.4.1.1. Frame Stacking

With frame stacking the agent processes the last s, obser-
vation sets at every step instead of only the current ob-
servation, where s, is known as the stack depth. This is
achieved by multiplying the input dimension by the stack
depth resulting in a total input size of O * s4 = Oy4. Es-
sentially, this gives the agent the ability to develop short-
term memory and approximate the velocity of visible ob-
stacles. By combining the recent history of velocity com-
mands and scan frames the agent can compare the dif-
ferent values and detect how fast an obstacle is moving
and in which direction. This enables the agent to distin-
guish between static and moving obstacles as the velocity
of a moving obstacle influences the distance readings as
shown in Figure 9. Frame stacking has been used before in
DRL navigation systems [31,49,50] for UGVs and other
applications [51,52]. However, to the best of our knowl-
edge, the effect of frame stacking on navigation perfor-
mance and collision avoidance has not been extensively
studied before. Figure 10 illustrates how frame stacking
is implemented and how multiple frames are used as input
for the neural network.

4.4.1.2. Frame Stepping

The upper range for sq is limited by computational capa-
bilities as the input dimension grows proportionally to sg4.
However, with small values for s; the subsequent frames
will be very near to each other in time providing little valu-
able information as the environment has shifted only min-
imally. A simple way to increase the time range in which
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Table 5: Navigation performance for different DRL stacking algorithms in stage 2.

Training Evaluation
Model Stack Depth Frame Skip Success CS CD TO Avg. Dist Avg. Time Speed
TD3 S1 1 0 94 0 5 1 2.95 14.53 0.92s
TD3 S2 3 0 96 0 3 1 3.23 16.15 0.91
TD3 S3 3 3 93 1 5 1 2.90 14.40 0.92
TD3 S4 5 0 926 0 3 1 3.11 15.58 0.91
TD3 S5 5 5 93 0 6 1 3.04 15.09 0.92
TD3 S6 10 0 95 0 2 3 3.46 17.67 0.89

the agent can observe each step is to set a larger s;. How-
ever, as sq increases the number of input nodes to the net-
work grows which can quickly increase the complexity of
the model making it more difficult to train. Another ap-
proach is to insert an artificial delay to ensure enough time
has passed in between steps, but this would significantly
increase the reaction time of the agent. Frame stepping
enables the agent to insert any amount of time in between
two subsequent input frames, without heavily affecting
the model complexity or responsiveness of the agent. By
keeping an active history of a number of the most recent
observations, the agent can recall and concatenate any of
the samples stored in memory with the most recent ob-
servation. Figure 10 shows how frame stepping is imple-
mented for our system using a rolling buffer principle.

Ot2 Ot1 Ot

: 02 O] Ot
Figure 9: Frame stacking enables the agent to distinguish be-
tween static obstacles (green) and oncoming dynamic obstacles

(red).

At every timestep ¢ the robot takes s4 observations
at a step interval s. as input, which gives the observa-

tion set Oy, Ot,(sﬁ)*l, Ot,(se)*g, ey Otf(se)*(sdfly This
is achieved by storing the last N = s, * s4 observations
in a FIFO buffer of size B = O,, * s4 * s, that is updated
with the most recent observation at every time step. Ef-
fectively, this enables the agent to look back in time for
sq frames at steps of exactly s. frames at every time step
without the need for an artificial delay.

Rolling Buffer

1

Figure 10: Frame skipping and frame stepping depicted with
sq =3 and s = 3.

4.5. Simulation Results

To analyze the effect of frame stacking and frame step-
ping on dynamic obstacle avoidance, we trained multiple
policies with different frame stacking/stepping configura-
tions in stage 2, which contains only dynamic obstacles
to ensure that static obstacles do not influence the results.
Table 5 shows the evaluation results for the different frame
stacking and frame stepping configurations. The results
indicate that policies with frame stacking provide a slight
benefit over non-stacking policies, which aligns with our
expectations. The short history of scan observations and
velocity commands allows the agent to better anticipate
the trajectory of moving obstacles and navigate around
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them. Conversely, employing frame stepping on top of
frame stacking did not seem to improve dynamic obsta-
cle avoidance. A possible explanation is that the time be-
tween steps is already sufficiently large, and additional
time between consecutive input frames delays the reaction
speed of the agent. While frame stepping did not benefit
our training setup, it may improve frame stacking perfor-
mance on more powerful machines with less processing
time between steps.

The corresponding reward graph in Figure 11 shows
that the non-stacking model learns slower and scores lower
than most other models, but eventually reaches a similar
reward value as TD3 S2. The difference in average reward
between the different stacking policies is relatively small,
with TD3 S4 performing slightly better than the others.
This is also reflected in the evaluation results, where TD3
S4 navigates more efficiently compared to TD3 S2, with
a similar success rate. In both cases, TD3 S2 and TD3 S4
performed better than their counterparts with frame step-
ping. Increasing the stack depth beyond five frames for
TD3 S6 resulted in slightly worse performance in terms
of success rate and path efficiency. TD3 S6 also suffered
more from timeout failures, likely due to the larger num-
ber of frames being processed as input, making it harder
for the agent to extract the correct information. A larger
stack depth retains each frame in memory longer, includ-
ing frames where obstacles were near. This may cause the
agent to take a more conservative and less optimal route,
as the presence of obstacles influences the network input
over a larger number of steps.

2000
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0
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® —1000
2 TD3 S1 (1/0)
g —2000 TD3 S2 (3/0)
—— TD353(3/3)
—3000 —— TD3 54 (5/0)
—4000 —— TD3 S5 (5/5)
—— TD3 56 (10/0)
—-5000
0 1000 2000 3000 4000 5000 6000 7000
Episode
Figure 11: The average reward per 100 episodes for different

frame stacking/stepping configurations in stage 2.

4.5.1. Backward Motion

In most previous works on DRL UGV navigation, the
agent is restricted to moving only in the forward direction
and cannot move backward [6]. However, the ability to
move backward can significantly improve the robot’s abil-
ity to avoid obstacles, especially dynamic ones. The main
arguments for omitting backward motion are twofold: (1)

The LiDAR scan only needs to cover the front half of the
robot. (2) The agent does not need to learn how to ef-
fectively employ action commands for backward motion.
However, we argue that backward motion can provide a
real benefit to navigation performance, particularly in sit-
uations where the robot needs to react quickly, as depicted
in Figure 16, where an obstacle suddenly approaches from
around the corner and the robot may not have sufficient
time to maneuver around it. In such scenarios, the only
option is to quickly move backward to avoid a collision.

Table 6 highlights the difference in performance be-
tween configurations with backward motion disabled and
enabled. While both policies achieve a near 100% success
rate, the policy with backward motion enabled performed
slightly better and did not suffer from a single collision.
Backward motion allows the agent to avoid collisions in
almost every situation, although timeouts can still occur.
The increase in success rate comes at a cost: the backward-
enabled (BE) agent travels a longer distance on average.
This increase in distance traveled and episode duration is
expected, as the agent generally moves backward to avoid
an obstacle and then deviates from the path to the goal.
Afterward, this deviation needs to be corrected, resulting
in a longer path, whereas other agents would have simply
crashed.

The reward graph in Figure 12 shows that the BE
policy learns faster than its counterpart at the beginning
of training. This could be explained by the fact that the
backward-disabled (BD) policy has to first learn how
to navigate around obstacles without moving backward,
which is a more complex behavior. Although the BE pol-
icy yields better results during evaluation, both policies
eventually converge to a similar reward value. The to-
tal reward per episode is based on multiple factors and
decreases in value as time progresses. The higher suc-
cess rate is likely compensated by the increased distance
and time required for the BE, resulting in a similar reward
curve. However, since the success rate and collision count
are the most important metrics for this study, the BE agent
is the preferred choice.

Additionally, incorporating backward motion en-
ables the agent to learn more sophisticated maneuvers.
Since the reward component for linear motion remains un-
changed (Equation 6), the robot is discouraged from mov-
ing in the backward direction unless necessary to avoid a
collision. This gives rise to new behaviors, such as a turn-
ing maneuver similar to a three-point turn commonly seen
in real-world driving to reverse the heading direction.

One of the challenges of training the agent with back-
ward motion enabled is that during the exploration stage,
taking purely random actions can result in the agent os-
cillating around its starting position as it alternates for-
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Table 6: The effect of backward motion on navigation performance in stage 4. BD=Backward Disabled and BE=Backward Enabled.

Training Evaluation
Model BS RB Discount LR Tau Success CS CD TO Dist Time Speed
TD3BD 1024 1let6 0.99 3e-4 3e-4 97 0 2 1 4.83 25.07 0.88
TD3BE 1024 let6 0.99 3e-4 3e4 929 0 0 1 557 2744 0.92
2000 N Furthermore, our system shows consistent performance
Y AONA . . . . . .
1000 ANPORNN VAV in a variety of environments with different characteris-
tics. Therefore, it is reasonable to assume that the per-
B 0 formance of our algorithm will not decrease significantly
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Figure 12: The average reward per 100 episodes showing the g 70
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ward and backward movement commands, leading to low-
quality replay buffer samples. Therefore, we bias the ran-
dom linear actions toward forward movement to generate
higher-quality samples as the robot interacts with a larger
part of the environment. The effect of backward motion
will also be demonstrated on the physical robot in the cor-
responding section.

Finally, we compare the simulation results of our
best-performing agent with different mapless indoor nav-
igation algorithms that were evaluated in a similar setting.
Figure 13 shows the success rates for each of these algo-
rithms. The baseline TD3 is implemented by Gao et al.
[28] as a local planner for their long-range navigation sys-
tem. GRainbnow [53] combines Genetic Algorithms with
DRL to reduce the sensitivity to hyperparameter tuning.
The same authors have also evaluated the standard Rain-
bow method [54] which achieved the lowest score out of
all algorithms. Corsi et al. [35] tested their SBP-based
DRL algorithm and compared it with a standard PPO im-
plementation. All of these algorithms were evaluated over
100 episodes using the Turtlebot3 simulation platform.
Our implementation with backward motion achieves the
highest success rate out of the tested algorithms. Although
the evaluated environments are not completely identical,
our environment includes both dense static and dynamic
obstacles and is generally more challenging than the en-
vironments in the other works presented in Figure 13.

Figure 13: The success rate of different mapless navigation al-
gorithms in simulation from the following papers: Rainbow [54],
Baseline TD3 [28], GRainbow [53], SBP-DRL [35].

4.5.2. Reward Design & Behavior Shaping

The following section will describe a set of reward compo-
nents and their corresponding variants which can be com-
bined into a composite reward function. The goal for each
of the reward components is to facilitate the training pro-
cess or to restrain certain undesired behavior. The result-
ing composite reward functions are evaluated and com-
pared in simulation. The goal is to find an efficient reward
function that learns a satisfactory policy within a reason-
able amount of training time.

4.5.2.1. Reward Components

A well-designed reward function is essential for achiev-
ing good navigation performance within a feasible train-
ing time [55]. In an environment where rewards are sparse,
extra steps need to be taken to accelerate the learning pro-
cess of the agent, especially at the start of training [56].
Through reward shaping [57] the agent is given incremen-
tal rewards with every step guiding it toward the final goal.
Although reward shaping usually requires hand-crafted so-
lutions based on expert knowledge, it is still widely used in
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recent works as even simple rules can significantly boost
performance.

The autonomous navigation problem generally suf-
fers from the sparse reward problem as the only outcomes
associated with a true reward are reaching the goal or end-
ing in a collision with many steps in between. The ma-
jority of works on autonomous navigation discussed in
the related work make use of a composite reward func-
tion consisting of several combined reward components
[6] in order to guide the agent toward the goal. By combin-
ing different reward components and adjusting the corre-
sponding scaling factors different types of behavior can be
elicited from the agent. For example, penalizing the agent
for repeatedly adjusting its steering direction can reduce
the amount of swaying and smoothen the trajectories. In
this section, we analyze the different reward components
often used for 2d LiDAR autonomous navigation and their
effect on the training time and performance of the agent.
Distance. The most common auxiliary reward component
is based on the distance from the agent to the goal. d; rep-
resents the distance from the agent to the goal at time step
t. One version of this component is defined by the differ-
ence in distance to the goal between two consecutive time
steps, rewarding the agent for moving closer to the goal,
as seen in the works by Tai et al. [20] and Long et al. [50].
The difference is usually multiplied by a scaling factor cg4
to keep the overall reward balanced and account for differ-
ences in step frequency between machines. This results in
the following formula:

2

Note that here the bounds of 74;stqnee are defined by
the maximum velocity of the robot and c4. This can make
it difficult to select the optimal value for ¢, to find suitable
reward limits.

For this reason, we propose a normalized version
that takes into account the maximum amount of distance
the agent could have covered given the time difference

ra, = ca* (dy —di—1)

t; —t;—1. Letv,, , denote the maximum linear speed of
the robot:
di —di—q
Tdy = Cd * 3)
’ Vlygy * (b = ti1)

Using this approach the fraction part of the formula
is bound to the range [—1, 1], effectively limiting the range
of the entire component to [—cg4, c4] which facilitates clear
bound selection in proportion to other components.

Other approaches consider only the current distance
and initial distance to the goal d; without taking into ac-
count each previous time step:

2*d0
do + d;

Effectively, this creates an attraction field in which the
agent is rewarded for being in closer proximity to the goal
rather than being rewarded for actively moving toward the
goal. While this approach simplifies defining bounds for
the component it has the downside of rewarding the agent
for circling close around the goal rather than terminating
the episode. Therefore, it is best to ensure that the total re-
ward outcome per step can be at most 0 to avoid positive
reward stacking.

Heading. The heading component is not strictly required
for a good function model as it partly overlaps with the
distance component, but it can accelerate the process, es-
pecially at the start of training. Given the simple relation
between the angle to the goal and the output of the reward,
heading toward the goal is often the first thing the agent
learns.

Tdy = Cq * (4)

)

Forward Velocity. To encourage the robot to move for-
ward, especially early on during the training, a reward can
be applied based on the linear velocity. By taking the
square of the difference between current linear velocity v,
and maximum possible linear velocity v;_ __ the system
penalizes slower velocities exponentially. ¢; is the scal-
ing constant for the component which can be adjusted to
vary the weight of the penalty.

To = —0Oy

o, = —c % (v, — v1)? (6)

max

Steering Velocity. Long et al. [50] and Choi et al. [21]
give a penalty for larger angular velocities to encourage
the agent to follow a smooth trajectory. During training, it
was observed that without this component the agent might
exhibit so-called ’swaying’ or ’spinning’ behavior. By
employing swaying, the agent moves forward while con-
tinuously alternating between high negative and positive
angular velocities, leading to a swaying motion. Exces-
sive angular velocities may cause the agent to sway exces-
sively in the opposite direction, resulting in overcompen-
sation. While this behavior does not necessarily impede
the agent from achieving satisfactory performance in sim-
ulation, it presents significant challenges in real-world
scenarios, where physical constraints, mechanical wear,
and limited battery capacity are factors. Therefore, it is
desirable to have a stable navigation system that moves
efficiently along smooth trails with minimal excessive
turning. Another hazard of omitting the angular velocity
penalty is the occurrence of ’spinning’ behavior in which
the agent continuously spins in a single angular direction
either in place or with minimal linear velocity making
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little to no progress toward the goal. With an improper
training configuration, the agent can be stuck in this detri-
mental cycle for a long period without making progress
toward an optimal policy. One method is to assign an ex-
ponentially increasing penalty to larger angular velocities
to encourage the agent to turn as little as possible:

Tp,1 = —Ca % V2 @)
However, the steering penalty may lead to sub-optimal
path planning as the agent avoids making large turns re-
sulting in less flexible path planning. Long et al. [50] and
Choi et al. [21] take a different approach by applying a
steering penalty only at larger velocities to allow the agent
to turn moderately but avoid large turns. This prevents the
planned routes from becoming too stiff while producing
smoother trajectories.

Tv,2 = {

Obstacle Avoidance. Another common practice is the use
of safety margins to encourage the robot to proactively
avoid obstacles and keep a certain distance from them.
The simple approach is to assign a static negative reward
when the smallest distance reading d,,,;,, crosses a safety
threshold d,, and the robot enters the *danger zone’ of the

obstacle:
Tobl = {

A more refined approach involves gradual danger zones
in which the penalty increases as the robot moves closer
to the obstacle after entering the danger zone.

ifvg > /4
otherwise

—Cq * Vg,

0 ®)

~920,
0,

if dpin < d,
otherwise

(€))

dmin - dcol
do - dcol
0,

otherwise

o

(10)

robg =

Termination. Lastly, when the robot reaches a terminat-
ing state, it receives a reward based on the event that ended
the session. If the distance to the goal d; is smaller than
the required minimum distance dgoq1, the robot receives a
large positive reward. Conversely, if the smallest detected
distance d,,,;,, is less than the minimum allowed distance
to any obstacle d..isi0n, the robot receives a large nega-
tive reward.

2500, ifd, < dgoal
Ttermination — 720007 lf dmvn < dcollision (11)
0, otherwise

4.5.2.2. Reward Functions

To evaluate the effectiveness of different reward compo-
nents, we train multiple models using various composite
reward functions. Each DDPG model is trained for ap-
proximately 40 hours, after which the best-performing it-
eration is evaluated over 100 trials. The outcome of each
episode is recorded in Table 7, along with the average
distance covered and episode duration for all successful
episodes. The sway index, representing the variance in
steering, is calculated by summing the squared differences
between consecutive angular actions. A higher sway in-
dex indicates undesirable ’swaying’ behavior, reducing
system stability.

First, reward functions from various LiDAR-based
DRL navigation papers are reimplemented and evaluated
in our environment. Next, the reward functions are modi-
fied incrementally based on results and our hypotheses to
improve performance and reduce training times. The first
and most straightforward reward function R4 considers
only the difference in distance to the goal between con-
secutive time steps (Equation 2) as seen in the works of
Tai et al. [20] and Kato et al. [27].

Next, the reward function Rp is derived from the
study by Long et al. [50] and includes a penalty for an-
gular velocities. As discussed before, this is necessary in
order to limit ’sway’ behavior. From the results, we see
that models trained without the angular velocity compo-
nent have a significantly higher sway index.

After observing the robot in action, it became clear
that the robot had too little incentive for moving forward.
The robot often came to a standstill when approaching
walls to avoid the collision penalty. This often resulted
in a timeout and slowed down the training process to such
an extent that it did not learn to maneuver around obsta-
cles. Therefore, in Rp the linear velocity component is
introduced to encourage the robot to move forward. This
eliminates the number of timeouts but results in a much
higher number of collisions as the robot does not continue
to move forward even when close to obstacles.

Consequently, a non-terminating penalty is intro-
duced which penalizes the robot for moving close to any
obstacles. This motivates the robot to turn away from
the obstacle at an earlier time step giving it more time to
explore alternative routes and avoid a collision.

Combining all obtained insights results in the best-
performing reward function Rg with a 95% success rate.
Although it’s difficult to specify each component’s con-
tribution, omitting any component reduces performance.
Furthermore, testing alternative components in reward
functions Ry, Ry, and R ; showed no significant improve-
ment in any evaluation metrics.
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Table 7: Evaluation of different reward functions with varying components in stage 3.

Function Components Success CS CD TO Dist Time Sway index
R4 Ta, — 1 35 53 12 0 3.06 0915 0.031
Rp Tdy + Ty, +Tp,1 — 1 35 60 5 0 448 1449 0.011
Re Td, +Ta, + Ty —1 33 57 21 0 3.05 11.19 0.045
Rp Tdy + To,1 + Top, — 1 22 13 6 59 350 993 0.012
Rg Td, +Tay + Ty +Ty,1—1 32 57 11 0 275 975 0.011
Rp Tdy + Toy + To,1 4+ Tob, — 1 22 1 20 48 2.19 19.50 0.005
Rg Tdy + Toy + Toa1 +Tob, — 1 44 6 19 31 528 1851 0.003
Ry Tq, +Tay + Ty +Ty,1 +Top, — 1 93 2 3 0 430 23.01 0.012
Ry Tdy + Tay + Ty +To,1 +Tob, — 1 93 1 6 0 418 22.08 0.013
Ry Tdy + Tay + Ty +To,1 + Tob, — 1 93 1 6 0 399 18.12 0.005
Rk Tdy + Tay +Toy +To,1 + Tob, — 1 90 0 10 0 3.77 20.04 0.013

Figure 14 shows the number of successful episodes
over the first 3500 episodes. This graph indicates how
fast each model learns the desired behavior which trans-
lates into the efficiency of the underlying reward function.
We see that R, Ry, and R; show a similar success rate
where small discrepancies can be explained by small dif-
ferences in starting conditions. The success rates remain
fairly constant after the first 3500 episodes showing little
further improvement. Note that in theory, all reward func-
tions could eventually converge to a similar performance
level given an infinite amount of time. However, since
part of our goal is to optimize the training duration we
limit the amount of training time. The evaluation of dif-
ferent reward functions concludes this part with R being
the reward function of choice for our experiments.

5. Physical System Validation

This section evaluates the performance and robustness of
trained policies in various real-world scenarios.

2500f — Ra — Re
Rs —— Ry 4,
— Rc — R /4/"
20000 g, g e
Re — Rk _ "'//

Re

Success count
= —
o w1
o o
o o

500

0 500 1000 1500 2000

Episode

2500 3000 3500

Figure 14: The success rates over time during training for differ-
ent reward functions.

5.1. Real-World Evaluation

One of the challenges in transferring the navigation pol-
icy from simulation to the real world is the precise tun-
ing needed to accurately translate model output actions
into physical motor control commands. In simulation, the
resulting forward velocity of the robot always scales lin-
early with the action output at any value. However, for the
physical robot factors such as inertia, rolling resistance,
and imperfect motor and tachometer hardware cause the
real-world motion to deviate from the behavior in simu-
lation. To account for the inertia and rolling resistance
of the wheels a tuned base speed value is added to the
motor PWM signal to prevent the robot from remaining
stationary when the model outputs lower velocity com-
mands. Furthermore, the maximum values for linear and
angular velocity need to be tuned to the appropriate val-
ues for the PWM signal to the motors. Lastly, a low-level
PID controller is implemented on the Arduino board us-
ing tachometer input to provide fast feedback to the motor
actuators which requires tuning according to the specifica-
tions of the robot model.

To demonstrate the transferability of the trained pol-
icy to the real world a physical experiment is conducted
in which the robot is repeatedly tasked with navigating
from the starting location to the goal in the environment
shown in Figure 15. The experiment consists of 20 trials
during which the outcome, distance traveled and duration
are recorded. In addition, we also measure the portion of
the total trial during which the robot is moving at maxi-
mum linear velocity. Table 8 shows that the robot is able
to achieve a 90% success rate during the performed ex-
periment. The shortest path for the current scenario can
be measured to be approximately 5 meters long while the
robot traveled 6.83 meters on average during the experi-
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Table 8: Evaluation on the physical robot over the same trajectory for 20 trials in a real-world stage.

Algorithm Success CS Timeout

Avg. Dist (m) Avg. Time (s)

Max speed ratio

TD3 18 2 0

6.83

22.15 0.88

ment. The additional distance can be explained by the fact
that the robot maintains a safety margin to any obstacles as
well as inaccuracies in the distance measurements, odome-
try, and motor output causing deviations from the desired
trajectory which are corrected by the robot, all resulting
in longer paths. Despite being trained in an environment
with different obstacles and dimensions the robot is still
able to navigate reliably in the unseen scenario.

I

Figure 15: The stage used for the real-world experiment pre-
sented in Table 8. The starting position and goal are indicated
by the blue and green circles.

5.2. Backward Motion

To demonstrate the viability and benefit of backward mo-
tion in the real world, we reproduced a realistic situation
in which the agent has to rely on backward motion in or-
der to avoid a collision as shown in Figure 16. The ob-
jective of the robot in this scenario is to move forward to-
ward its goal position while avoiding any obstacles. The
top left image shows the starting situation where both the
robot and dynamic obstacle are approaching the same cor-
ner without a line of sight between them. The top right
image shows the moment shortly after the robot detects
the obstacle and starts to decelerate in response to the ap-
proaching obstacle. The obstacle is turning toward the
direction of the robot giving the robot too little time to
maneuver around the obstacle. The bottom left image fea-
tures a robot with backward motion. In this case, the robot
is able to quickly react and keep a safe distance from the

obstacle even as it moves toward the robot. After the path
has been cleared again the robot continues to move for-
ward toward its destination. On the contrary, the bottom
right image shows a robot without backward motion at-
tempting to steer away from the robot which results in a
collision. Note that in this situation the robot could not
simply avoid a collision by remaining stationary as the ob-
stacle is moving in the direction of the robot. Moreover,
due to inertia, the robot will still move forward slightly im-
mediately after giving the stop command and will come to
a halt closer to the obstacle as compared to in simulation.
A video demonstration of the depicted situation is made
available online.

In addition, a further demonstration of how back-
ward motion—compared to forward-only motion—to can
help the robot respond quickly in tricky situations is made
available online https://youtu.be/-eyNCvBohRk.

6. Discussion

Hyperparameter Tuning: The hyperparameter tuning
process highlighted the significant impact of parameters
such as replay buffer size, batch size, and learning rate
on the navigation performance of the Turtlebot3 using the
DDPG algorithm. Our experiments demonstrated that in-
creasing the replay buffer size from 1 x 10° to 1 x 106
enhanced the stability of the learning process, reducing
oscillations in the reward curve and leading to improved
performance in static collision avoidance. This finding
aligns with previous research indicating that a larger re-
play buffer helps mitigate the effects of catastrophic for-
getting and overfitting by retaining a more diverse set of
experiences [42].

Similarly, the adjustment of the batch size to 1024
significantly improved the stability of training, resulting
in smoother reward curves and better overall performance.
Larger batch sizes allow for better gradient estimates,
which contribute to more stable learning processes [43,44].
However, it is essential to balance batch size and computa-
tional resources, as excessively large batch sizes can lead
to diminished returns due to increased memory require-
ments and slower convergence rates.

The learning rate tuning experiments underscored the
necessity of a carefully balanced learning rate to achieve op-
timal performance. A learning rate of 3 x 10~% provided a
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good trade-off between training stability and speed, leading
to the highest success rate of 99% for the DDPG 5 model.
This result is consistent with the literature suggesting that
an appropriately tuned learning rate is critical for avoiding
premature convergence to suboptimal policies or instability
during training [43].

Figure 16: Backward motion enables the robot to avoid a collision
when a dynamic obstacle suddenly appears. TL (1): The robot
approaches the corner with no vision of the obstacle. TR (2):
The robot detects the obstacle moving toward it. BL (3a): The
BE policy evades the oncoming obstacle by moving backward. BR
(3b): The BD policy attempts to turn away and fails to avoid a
collision. Video: https://youtu.be/-eyNCvBohRk.

LiDAR Configuration: Our investigation into LiDAR
scan densities revealed that a configuration of 40 scan
samples provided the best performance for the Turtlebot3
in environments with both static and dynamic obstacles.
This configuration allowed the agent to detect obstacles
early enough to avoid collisions, achieving a 94% success
rate in stage 3. Higher scan densities did not result in sig-
nificant performance improvements and sometimes even
slightly worsened the results, likely due to the increased
complexity of the input data without a corresponding ben-
efit in obstacle detection capability.

The results emphasize the importance of selecting

an appropriate scan density that balances the need for suf-
ficient environmental information with the computational
and learning complexity of the neural network. In envi-
ronments with different obstacle shapes and sizes, it may
be necessary to adjust the scan density to achieve optimal
performance.
Algorithm Selection: Our comparison of off-policy algo-
rithms, including DQN, DDPG, and TD3, demonstrated
that TD3 outperformed the others, achieving the highest
success rate of 97% in stage 4. This finding is consistent
with previous research showing that TD3’s improvements,
such as the introduction of a second Q-function and de-
layed policy updates, help mitigate the overestimation of
Q-values and enhance learning stability [48].

The reward curves for the different algorithms rein-
forced these results, with TD3 achieving the highest over-
all scores and the most stable learning process. Given its
superior performance and stability, TD3 was selected as
the algorithm for the remaining experiments.
Generalization: The generalization capability of the TD3
policy was evaluated in different stages, including a signif-
icantly larger and more complex environment in stage 5.
The policy demonstrated strong generalization, achieving
a94% success rate in stage 5, despite the increased dimen-
sions and complexity of the environment. The higher num-
ber of timeouts in this stage suggests that the agent occa-
sionally struggled with the larger area and longer contigu-
ous obstacles, highlighting the need for further improve-
ments in larger environments.

Dynamic Obstacles: Dynamic obstacles posed a signifi-
cant challenge, with most failures in stage 3 attributed to
collisions with moving obstacles. Our experiments with
frame stacking and frame stepping indicated that frame
stacking provided a slight benefit by enabling the agent to
develop short-term memory and better anticipate the tra-
jectories of moving obstacles. However, frame stepping
did not yield additional improvements, likely due to the
increased reaction time required.

Backward Motion: The introduction of backward mo-
tion significantly improved the agent’s ability to avoid
collisions, especially in scenarios involving dynamic ob-
stacles. The backward-enabled (BE) policy achieved a
higher success rate and demonstrated more complex ma-
neuvers, such as reversing out of tight situations. The re-
ward graph showed faster initial learning for the BE pol-
icy, indicating that the ability to move backward facili-
tated quicker adaptation to the environment.

Overall, the experiments highlighted the impor-
tance of carefully tuning hyperparameters, selecting ap-
propriate LiDAR configurations, and designing effective
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reward functions to achieve optimal navigation perfor-
mance in complex environments. The TD3 algorithm,
with its superior stability and performance, proved to be
the best choice for the Turtlebot3 navigation task, demon-
strating strong generalization and robustness in both sim-
ulated and real-world scenarios.

7. Conclusions

In this study’, we developed a robust deep reinforcement
learning navigation stack capable of autonomous naviga-
tion and obstacle avoidance in both simulation and real-
world environments, achieving a 99% success rate in com-
plex, dynamic conditions. Our work demonstrated that
incorporating backward motion and 360-degree LiDAR
coverage could significantly enhance navigation perfor-
mance, challenging traditional conventions. Furthermore,
we reduced swaying through a carefully designed reward
function, resulting in smoother robot trajectories.

However, several factors limit the current system’s
potential. The robot hardware, which is still at the pro-
totype stage, requires improvements—particularly in the
steering mechanism and LiDAR placement. Although the
current system avoids convolutional and transformer net-
works to minimize complexity, these techniques represent
promising avenues for future enhancements to the robot’s
obstacle-avoidance capabilities. Additionally, integrating
an RGB camera alongside the LIDAR could provide valu-
able contextual information for improved dynamic obsta-
cle avoidance, despite the increased complexity and effort
required to maintain transferability.

It could be deduced that our study provides a com-
pelling foundation for the development of autonomous
robotic systems and prompts further investigation into
hardware design and the potential use of convolutional
and transformer networks.
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