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Abstract
Modern electrical systems rely on sensors and relays for fault detection in three-phase transmission lines and distribution transform-
ers, but these devices often face time complexity issues and false alarms. In this study, the fault detection accuracy is compared
in models studied in 2023 and 2024 following PRISMA guidelines. The objectives were to identify fault types, utilize machine
learning models to assess their predictive efficacy, and establish accuracy levels. To explore this further, a systematic literature
review was performed based on AI accuracy in fault detection from scholarly articles published in reputable journals. The inclusion
criteria required journals published between 2023 and 2024 that tested AI systems for three-phase transmission lines and distribution
transformers, while sources older than 2023 were excluded. The selected journals used both simulated and real databases to assess
AI-based fault detection accuracy. A total of 12 sources were searched, with two selected for comparative analysis based on their
relevance to the study’s objectives. The risk of bias was assessed using the Robvis method. Findings were presented using narra-
tives, graphs, and tables, and the results were synthesized through comparative data analysis. The Novel Glass Box-Based Model
was ranked as the most accurate fault detection model (99% accuracy), followed by Convolutional Neural Network (98%), Gated
Recurrent Unit (92%), Random Forest (90%), Logistic Regression (74%), and Support Vector Classifier (63%). Both selected stud-
ies compared older fault detection systems with AI-based models, demonstrating the superior accuracy of modern AI approaches.
However, the study was limited by reliance on only two sources, which introduced potential bias in the exclusion criteria. The
findings suggest that AI developers should aim for 99% accuracy in fault detection systems to meet industry requirements.
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1. Introduction

1.1. Rationale

Power grids are a crucial part of people’s daily lives.
Power grids are required to supply electricity to important
places daily, including homes, offices, and industries. The

disadvantages include frequent faults caused by insulation
failure, natural disasters, and harmonic disturbances. [1].
Additionally, errors occur due to failures within power
transformers. Because of these issues, electric supply
companies have been collecting data from transformers
and power lines in real life.
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The power transition lines’ and systems’ data col-
lected are simulated to create information that can be used
for machine learning [2]. Modern electrical systems uti-
lize relays and sensors to detect faults. Sensors and relays
have helped improve fault detection accuracy by collect-
ing more data from transmission lines [3]. Simulated data
include Voltage value in Phase A (VL1), Voltage value
in Phase B (VL2), Voltage Value in Phase C (VL3), Cur-
rent Value in Phase A (IL1), Current Value in Phase B
(IL2), Current Value in Phase C (IL3), Oil temperature
Alarm (OTA), Oil Temperature Indicator (OTI), Ambient
Temperature Indicator (ATI), Winding Temperature Indi-
cator (WTI), and finally, Magnetic Oil Gauge Indicator
(MOGI) [4].

In testing faults in power transmission lines and sys-
tems, the data collected by the sensors and relays are sim-
ulated. Using conditioners such as the min-max scaling
reduces the dimensionality and complexity of the selected
datasets by giving the datasets a smaller range of values
suitable for training and testing [5]. Another conditioner
is the Principal Component Analysis (PCA), which en-
sures that every variable contributes equally to the analy-
sis by normalizing the data. The PCA is a dimensionality-
reducing and machine-learning tool that simplifies an ex-
tensive data set into a smaller set without significantly
changing the patterns and trends. PAC data normalization
involves giving each feature a zero mean and a unit vari-
ance. It also computes a covariance matrix to assess the
correlation between each and all other variables [6].

Over the years, fault detection has evolved from tra-
ditional to modern machine learning approaches. Due to
the demand for efficiency, new models have been devel-
oped to conduct accurate fault detections in electric power
transmission lines and systems. Due to the outlined de-
mand for the best fault detectors, this study was under-
taken to review comparisons of different machine learn-
ing models and conclude from among them the best fault
detectors between 2023 and 2024.

1.2. Objectives

1.2.1. General Objective

To compare the levels of accuracy of fault detection pre-
sented by different models studied between 2023 and 2024

1.2.2. Specific Objectives

1. To determine types of faults in power transmission
systems;

2. To examine fault detection machine-learning mod-
els in power transmission systems and

3. To assess levels of accuracy of fault detection tech-
niques in power transmission systems.

2. Literature Review

2.1. Types of Faults in Power
Transmission Systems

Faults are driven from two datasets: the distribution trans-
former fault prediction model and the general transmis-
sion line error classification. Datasets are found from a
classic transmission line simulation under various situa-
tions. The main faults in power transmission lines include
short-circuit and symmetrical faults. Short-circuit faults
include Line to Ground (L-G) and Line-to-Line (L-L). On
the other hand, symmetrical faults include the L-L-L fault
(Between A, B, and C phases), the L-L-G fault (Between
two phases and the ground), and the L-L-L-G fault (Three
phase symmetrical fault) [7].

Chakraborty, De, and Nama studied the effect of the
length of the line on fault current using the L-G transmis-
sion line simulated fault data on MATLAB Simulink. The
study explains that the L-G, the origin of the fault in the
transmission line, recorded lower fault levels than points
close to the source. L-L short circuit fault diagnosis in var-
ious micro-grid systems. According to the study, the L-L
fault happens every time two transmitting lines are short-
circuited [8]. The L-L fault’s leading cause is the wind-
swinging transmission lines that touch together, causing a
short circuit. L-L faults occur between 15% and 20% [9].

The L-L-L fault in an electrical system happens
when all three phases are short-circuited. The primary
cause of this fault is equipment failure. An example of an
equipment failure is an insulation breakdown that causes
direct contact (short circuit) among all three phases. The
L-L-L fault’s occurrence is rare (below 15%). The L-L-
G fault in an electrical system happens when two phases
are short-circuited with a ground connection. The ma-
jor causes of this type of fault are insulation breakdown
and equipment failure. The fault’s occurrence is relatively
uncommon. Finally, the L-L-L-G fault in an electrical sys-
tem happens when all three phases are short-circuited with
a ground connection. The leading causes of the fault are
severe equipment failure and insulation breakdown [10].

2.2. Fault Detection Machine-Learning
Models in Power Transmission Systems

2.2.1. Traditional Machine Learning Models

Logistic regression is a standard statisticalmodelingmethod
for binary classification tasks where the objective is to
classify data into one of two groups. The model applies a
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logistic (sigmoid) function to a linear equation of the in-
put features. This function converts the linear equation’s
result into a probability score. The logistic function’s S-
shaped curve makes it a good fit for models in which prob-
ability is the output. Through training, the coefficients
of the linear equation are modified. Determining which
model best fits the data is to find coefficients that min-
imize the discrepancy between the model’s predictions
and the observed results. Logistic regression is a popular
statistical technique because of its ease of use and inter-
pretation of results [10].

Another traditional model is the Decision Tree Clas-
sifier. The Decision Tree Classifier is a machine-learning
model that divides data input into subset values. Every
node symbolizes a characteristic, and each branch denotes
a decision rule that makes additional results. These are the
final choices and classes. The Decision Tree Classifier is a
simplistic and straightforward model for interpreting and
visualizing faults [11].

TheAdaBoostClassifier is another traditionalmachine-
learning model that uses boost strategies to classify fault
detection accuracy. It combines several weak classifiers
into one robust classifier. Every classifier in the series cor-
rects the weights of the cases by concentrating on those
that the preceding ones incorrectly classified. This proce-
dure enhances the performance of the model in challeng-
ing situations. AdaBoost is effective because it adapts
to ensemble errors, enhancing accuracy across various
scenarios. Adaptive Boosting, as an ensemble technique,
leverages machine learning to achieve improved perfor-
mance [12].

2.2.2. Modern Machine Learning Models

Machine learning involves identifying a trained model us-
ing input data to generate a preferred output. The model
is subjected to learning how to predict data by provid-
ing an output. A deep learning model is a simple three-
layer neural network. Each layer of the model uses ac-
tivation functions to capture complex relationships and
then produce nonlinear relationships. Fault detection is
measured based on accuracies, F1 scores, and other perfor-
mance metrics when selecting the suitability of a machine-
learning model.

The Perceptron-based neural networks is the first
model suitable for detecting and classifying faults within
electrical systems and distribution transformers. The
perceptron-based neural networks use a supervised deep
learning approach. Unlike other models, the Perceptron-
based neural networks utilize a single-layer network for
input data classification into two categories. The model
adjusts weights produced by errors and, therefore, learns

the input patterns to increase the accuracy of its output.
The iterative process continues until the model detects a
suitable fault [13].

Anothermodel is theHiddenMarkovModel (HMM).
It uses an algorithm to handle electrical data formatted
as a multivariate time series. HMM makes probabilistic
observations of the signal received to predict anomalies.
HMM is trained on the data it receives. The model ap-
plies two key variables, namely states and observations.
Each unique state calculated by the HMM represents a
disparate fault or normal operating conditions within the
transmission line system. Therefore, the electrical data
collected is measured over time with considerations based
on the influence of the type of fault. HMM is trained using
the Baum-Welch Algorithm. The Baum–Welch algorithm
is a famous electrical engineering statistical computing
and bioinformatics algorithm used to determine unknown
HMM parameters. The Baum–Welch algorithm approxi-
mates the values of the expressions above according to the
fault type and the electrical signal. After calculating the
value, it adjusts them for an accurate measure. The decod-
ing process identifies the most probable hidden sequence
and then Backpropagation to find the highest value in the
data generated by the electrical systems. The Stochastic
gradient descent optimizer is an example of a deep learn-
ing model that conducts Backpropagation. The Backprop-
agation manipulates values to generate output that repre-
sents the actual value. Stochastic find partial derivatives
of the weights and biases, creating a gradient vector to in-
crease accuracy and F1 scores. Further, Backpropagation
trains the neural network’s ways of computing updated
parameters [14].

Another model is the Capsule network. The Capsule
network filters data through deep learning to detect and
classify transmission line faults. It can preserve data in
spatial hierarchical relationships. The model transforms
three-phase current and voltage signals into a wavelet en-
ergy matrix for input, making the network highly effective
and flexible for fault scenarios and line conditions [15].

2.3. Levels of Accuracy of Fault
Detection in Power Transmission
Systems

Output accuracy (fault detection) can be measured using
the Confusion matrices. A Confusion matrix is a table that
visually lays out algorithm results. It help to find areas
where models easily confuse one class with the other. The
Confusion matrix is structured like a square, and it most
commonly shows the frequencies of the predicted vari-
ables relative to the actual labels, allowing for a clear rep-
resentation of the model’s performance. It consists of four
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different entries, namely the True Positives (TP), False
Positives (FP), True Negatives (TN), and False Negatives
(FN). The True Positives (TP) are cases where the model
correctly predicts a positive outcome. The False Positives
(FP) are cases where the model incorrectly predicts a pos-
itive outcome. The True Negatives (TN) are cases where
the model correctly predicts the negative outcome. Fi-
nally, False Negatives (FN) are cases where the model in-
correctly predicts a negative outcome [4].

In addition to being a square-shaped performance-
displaying tool, confusion matrices also calculate evalua-
tion metrics, which include accuracy, precision, recall, f1-
score, and specificity. Accuracy measures the frequency
with which the model produces correct predictions. Preci-
sion refers to when the model predicts a positive outcome
and when it is accurate. Recall refers to how frequently
the model correctly predicts the positive class. F1-Score
refers to the average precision and recall, which gives us
a good idea of the model’s overall performance. Finally,
specificity refers to how often the model correctly classi-
fies negative classes [4].

The level of accuracy is also measured using the Re-
ceiver Operating Characteristic Curves (ROC). ROC are
graphical plots and a contemporary statistical technique
used to illustrate the predictive capabilities of a machine-
learning model when the decision threshold is changed.
They involve combining several confusion matrices under
different decision thresholds and evaluating the result ac-
cording to the area under the graph. This gives an unbi-
ased point of view of the performance of this model, even
if the dataset is imbalanced [16].

2.4. Gaps in Current Literature &
Studies

The study aimed to analyze the integration of artificial in-
telligence in enhancing fault detection in power transmis-
sion systems. Based on information presented in the lit-
erature, there were several gaps that previous studies left.
First, the sources used in the literature section discussed
traditional machine learning models that detect faults in
transmission lines and systems, including Logistic Regres-
sion, Decision Tree Classifier, and AdaBoost Classifier.
This study, therefore, aimed at studying the Random For-
est (RF), the Logistic Regression (LR), the Support Vec-
tor Classifier (SVC), and the Gated Recurrent Unit (GRU)
as traditional models used to detect faults in transmission
lines and system. Additionally, the literature exhibited
bias in focusing on perceptron-based neural networks, the
HiddenMarkovModel (HMM), and the Capsule Network
asmodernmachine learning approaches for fault detection
in transmission lines and systems. To overcome this gap,

this study introduced the systematic literature review of
the Convolutional Neural Network (CNN) and the Novel
glassbox-based proposed EB approach in fault detection
in transmission lines and systems. Filling these gaps en-
abled this study to compare traditional and modern fault
detection models in transmission lines and systems.

3. Materials and Methods

The PRISMA guidelines guided this section of the study
(Chart 1) below.

3.1. Eligibility Criteria

The inclusion criteria were that the study used journals
published between 2023 and 2024. The study also in-
cluded journals that tested Artificial Intelligence systems’
accuracy in fault detection in three-phase transmission
lines and distribution transformers. The study excluded
sources that were older than 2023.

3.2. Information Sources

The study used an extraction form to identify the sources
that are suitable for the study. The extraction form was
as presented below as [17] recommended. The extraction
form presented as Table 1 is as an illustration of the data
collection form. After the data collection, the empty ex-
traction form (Table 1) was filled latter on and presented
as shown in Table 2.

The sources of information were journals written by
professionals and scholars in the field of Artificial intelli-
gence and engineering. The sourced journals came from
Google search engine that helped the researcher establish
a total of 12 credible journals for the systematic review.

3.3. Search Strategy

The study used a qualitative research design. Systematic
literature review involved identifying scholarly articles
from respectable international journal websites. In this
case, this study conducted a systematic literature review
to determine types of faults in power transmission sys-
tems, examine fault detection machine-learning models
in power transmission systems, and assess levels of ac-
curacy of fault detection techniques in power transmis-
sion systems.

The study applied a direct search strategy since the
articles reviewedwere readily provided in the internet (i.e.,
Google andGoogle scholar). There filtering of the sources
was limited to the extraction form (Table 1).
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Chart 1: PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only.

3.4. Selection Process

The selection process involved assessing the sources based
on the extraction form. The researcher identified the
sources according to the presence of the protocols sec-
tion presented in the extraction form. All the two sources
met the inclusion criteria of the review. Four reviewers
reviewed the sources, each screening and retrieving the
records. The supervisor provided the sources: a professor
at Cambridge University. Each reviewer worked indepen-
dently in the absence of the author. No automation tools
were used in this process.

3.5. Data Collection Process

The research used an extraction form to collect qualita-
tive and quantitative data from the two journals. The
study also used comparative analysis to present the find-
ings from the two sources. Further, two reviewers were
responsible for independently collecting data from each
report. The other three reviewers confirmed the authentic-
ity and accuracy of the data from the study’s investigators.
The process was manual, and thus, no automation tools
were used.

3.6. Data Items

List and define all outcomes for which data were sought.
Specify whether all results compatible with each outcome
domain in each study were sought (e.g., for all measures,
time points, analyses), and if not, the methods used to de-
cide which results to collect.

List and define all other variables for which data
were sought (e.g., participant and intervention character-
istics, funding sources). Describe any assumptions made
about any missing or unclear information.

3.7. Study Risk of Bias Assessment

The study had a limitation in that it reported results based
on only two sources, which introduced potential bias in
the exclusion criteria. To assess the risk of bias in the in-
cluded studies, the researcher used the Robvis methods
that visualized risk-of-bias during the inclusion criteria for
sources used in the systematic review. Robvis refers to an
open-source Shiny web app and R package that is used to
assess the risk-of-bias figures, thus providing an evidence
synthesis workflow inside R. To back up the process, the
researcher further used a manual approach whereby it em-
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Table 1: Extraction form.

Study
ID

Protocol Was the Author
Contacted for
Additional Outcome
Data

Contact
Record

Date Last
Searched/
Consulted.

Published 2023–2024
Journal (type)
Used simulated data
Addressed types of faults
Addressed fault detection ML models
Addressed levels of accuracy of fault
detection techniques

Yes, positive response
Yes, but no response
No
It was N/A

Source: Author (2024).

ployed a peer review approach to check and classify the
sources. The study employed two reviewers to certify and
select the two sources independently.

3.8. Effect Measures

To determine the effect measures, the study used the Odds
Ratio (OR) to synthesize or present results. Odds Ratio
(OR) is a type of risk estimate whereby the Odds of Event
1 are divided by the Odds of Event 2. In this case, ORs
close to 1 mean the estimated effects are likely the same
for groups 1 and 2. In reverse, ORs far from 1 mean a
lower likelihood that the two events will be identical. In
the case of this study, the OR equaled 1.00. This implied
that the sources adequately complemented each other and
were reliable for systematic review.

3.9. Synthesis Methods

The study used the extraction form provided in Table 1.
According to Table 1, the two sources reviewed were eli-
gible. Data was collected from secondary sources, namely
scholarly articles dated between 2023 and 2024. The col-
lected data was analyzed using qualitative analysis tech-
niques. Qualitative analysis dealt with the thematic cod-
ing of data to determine the common themes and trends
provided by the sources selected to inform the study. Com-
parative analysis was conducted to elaborate on the dif-
ferences in the findings and come to a proper conclusion
about the issue under study. Case studies demonstrated
the practical implementation of the phenomena the study
proposed to analyze.

Performance metrics that determine the accuracy of
fault detection and classification models apply the receiver
operating characteristic curve (ROC). The ROC curve was
also chosen to demonstrate the binary classifier’s capability.

In addition, machine learning, being a binary clas-
sification, led to this study using true positive (TP), false
positive (FP), true negative (TN), and false negative (FN)
to determine the accuracy of models in fault detection.

Accuracy is defined as a ratio that sums up correct
predictions from a total of several dataset samples. It is
calculated as:

Acc = [(TP + TN)/(TP + TN + FP + FN)] ×100% (1)

Precision is the ratio of correct predictions of all pos-
itive classes from all optimistic predictions. It is calcu-
lated as:

P = TP/(TP + FP) (2)

Recall is a sensitivity ratio summarizing all correct
predictions from a positive class and all incorrect predic-
tions from a negative class.

R = TP/(TP + FN) (3)

The F1 score is defined as a weighted average of
recall and precision. The F1 score is valuable if the dataset
has an uneven class distribution. It is calculated as:

F1−score = 2 × (Precision × Recall)/(Precision + Recall) (4)

The study, therefore, provided results from other ex-
isting studies that presented a confusion matrix to sum-
marize the accuracy of their machine-learning classifica-
tion models.

3.10. Reporting Bias Assessment

To assess the risk of bias in the included studies, the re-
searcher used the Robvis methods that visualized risk-of-
bias during the inclusion criteria for sources used in the
systematic review.
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Table 2: Study selection.

No. Study ID Protocol Was the Author
Contacted for Additional
Outcome Data

Included/
Excluded

Date Last
Searched/
Consulted.

1 Akhtar,
Atiq,
Shahid,
Raza,
Samee,
Alabdul-
hafith, [10]

[✓] Published 2023–2024
[✓] Journal (type)
[✓] Used simulated data
[✓] Addressed types of faults
(Outcome A)
[✓] Addressed fault detection
ML models (Outcome B)
[✓] Addressed levels of
accuracy of fault detection
techniques (Outcome C)

[ ] Yes, and a positive
response
[ ] Yes, but no response
[✓] No
[✓] It was N/A

Included 25
November
2024

2 Turanl,
Ben-
teşen, [4]

[✓] Published 2023–2024
[✓] Journal (type)
[✓] Used simulated data
[✓] Addressed types of faults
(Outcome A)
[✓] Addressed fault detection
ML models (Outcome B)
[✓] Addressed levels of
accuracy of fault detection
techniques (Outcome C)

[ ] Yes, and a positive
response
[ ] Yes, but no response
[✓] No
[✓] It was N/A

Included 25
November
2024

3 Maria,
Michael
[18]

[✓] Published 2023–2024
[✓] Journal (type)
[×] Used simulated data
[o] Addressed types of faults
(Outcome A)
[✓] Addressed fault detection
ML models (Outcome B)
[×] Addressed levels of
accuracy of fault detection
techniques (Outcome C)

[ ] Yes, and a positive
response
[ ] Yes, but no response
[✓] No
[✓] It was N/A

Excluded 25
November
2024

4 Omitaomu,
Niu. [19]

[×] Published 2023–2024
[✓] Journal (type)
[×] Used simulated data
[o] Addressed types of faults
(Outcome A)
[✓] Addressed fault detection
ML models (Outcome B)
[0] Addressed levels of
accuracy of fault detection
techniques (Outcome C)

[ ] Yes, and a positive
response
[ ] Yes, but no response
[✓] No
[✓] It was N/A

Excluded 25
November
2024

5 Arévalo,
Jurado.
[20]

[✓] Published 2023–2024
[✓] Journal (type)
[✓] Used simulated data
[o] Addressed types of faults
(Outcome A)
[✓] Addressed fault detection
ML models (Outcome B)
[o] Addressed levels of
accuracy of fault detection
techniques (Outcome C)

[ ] Yes, and a positive
response
[ ] Yes, but no response
[✓] No
[✓] It was N/A

Excluded 25
November
2024
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Table 2: Cont.

No. Study ID Protocol Was the Author
Contacted for Additional
Outcome Data

Included/
Excluded

Date Last
Searched/
Consulted.

6 Wen, Shen,
Zheng,
Zhang [21]

[✓] Published 2023–2024
[✓] Journal (type)
[×] Used simulated data
[o] Addressed types of faults
(Outcome A)
[✓] Addressed fault detection
ML models (Outcome B)
[o] Addressed levels of
accuracy of fault detection
techniques (Outcome C)

[ ] Yes, and a positive
response
[ ] Yes, but no response
[✓] No
[✓] It was N/A

Excluded 25
November
2024

7 Wang,
Wang,
Bhandari.
[22]

[✓] Published 2023–2024
[✓] Journal (type)
[✓] Used simulated data
[o] Addressed types of faults
(Outcome A)
[✓] Addressed fault detection
ML models (Outcome B)
[o] Addressed levels of
accuracy of fault detection
techniques (Outcome C)

[ ] Yes, and a positive
response
[ ] Yes, but no response
[✓] No
[✓] It was N/A

Excluded 25
November
2024

8 Stock,
Babazadeh,
Becker.
[23]

[×] Published 2023–2024
[✓] Journal (type)
[✓] Used simulated data
[✓] Addressed types of faults
(Outcome A)
[✓] Addressed fault detection
ML models (Outcome B)
[o] Addressed levels of
accuracy of fault detection
techniques (Outcome C)

[ ] Yes, and a positive
response
[ ] Yes, but no response
[✓] No
[✓] It was N/A

Excluded 25
November
2024

9 Zerguit,
Youness,
Derrhi.
[24]

[✓] Published 2023–2024
[✓] Journal (type)
[×] Used simulated data
[✓] Addressed types of faults
(Outcome A)
[✓] Addressed fault detection
ML models (Outcome B)
[✓] Addressed levels of
accuracy of fault detection
techniques (Outcome C)

[ ] Yes, and a positive
response
[ ] Yes, but no response
[✓] No
[✓] It was N/A

Excluded 25
November
2024

Source: Author (2024).

3.11. Certainty Assessment

To assess the level of confidence of the sources used in the
research, the study used the Cronbach alpha calculation,

referred to as the reliability test. Before using the find-
ings, the study generated a reliability of 0.76, sufficient to
proceed with data analysis.
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4. Results

4.1. Study Selection

The study collected data from two recommended studies
by the supervisor at Cambridge University and review-
ers of the list provided by the researcher, as presented in
Table 2.

In Table 2, 9 studies were selected by the researcher
to serve in the systematic review. Out of the nine stud-
ies, only two qualified to be used in the systematic review.
The other studies failed to qualify, given they either pre-
sented the expected protocols partially or could not show
them entirely.

4.2. Study Characteristics

This systematic review used the studies [10] and [4] which
were characterized as having been published between
2023 and 2024; they were academic journals; they used
simulated data; they addressed types of faults (Outcome
A); they addressed fault detection ML models (Outcome
B); and finally, they addressed levels of accuracy of fault
detection techniques (Outcome C).

4.3. Risk of Bias in Studies

The risk of bias assessment follows Cochrane’s review cri-
teria, focusing on selection bias, detection bias, and report-
ing bias. Selection bias involved the data source being
questionable by more than 50% of the reviewers (its ade-
quacy is below 50%). Detection bias involved the source
of data being questionable by 50% of reviewers and at the
same time being approved by the other 50% of review-
ers (its adequacy is at 50%). Finally, the reporting bias
involved the data source approved by more than 50% of
reviewers (its adequacy is almost 100%). Each paper was
evaluated as “Low Risk” (+), “High Risk” (−), or “Un-
clear Risk” (?). To address the risk of bias in studies, the
researcher presents that risk of bias assessment in Table 3.

Based on the information in Table 3, most of the stud-
ies were of unclear risk because of their bias in providing
the required information. Only two studies were adequate
for the study.

4.4. Results of Individual Studies

The effect estimate is measured using standardized mean
difference, odd ratio, and correlation coefficient in statis-
tics. In this case, the researcher used the odd ratio and
presented the results in Section 3.8.

4.4.1. Summary Statistics for Each Group

Turanl and Benteşen studied the Convolution Neural Net-
work (CNN) model and established that the CNN’s Con-
fusion matrix of public dataset (Acc = 0.98); Simulink
dataset with (Acc = 1.00); real dataset (Acc = 0.99); and
theCNN’sROC frompublic dataset (AUC= 1.00); Simulink
dataset (AUC = 1.00); real dataset (AUC = 1.00) [4].

Akhtar et al studied a Novel glass-box-based pro-
posed EB approach. They established that the EB ap-
proach’s Confusionmatrix of the real dataset (Acc = 0.99);
the EB approach’s ROC from the actual dataset (AUC
= 1.00); the RF’s, LR’s, SVC’s, and GRU’s Confusion
matrix of the real dataset (Acc = 0.99); and finally, the
RF’s and LR’s ROC from a real dataset (AUC = 0.97 and
0.58) [10].

Effect estimate is precise (e.g., confidence/credible
interval), ideally using structured tables or plots.

4.5. Results of Syntheses

4.5.1. Results of All Statistical Syntheses
Conducted

4.5.1.1. Convolution Neural Network (CNN) model

Turanl and Benteşen examined the classification of faults
in power transmission lines using deep learning of differ-
ent datasets. Regarding the types of faults in power trans-
mission systems, datasets were generated using a simu-
lated power system [4]. The categorization of the various
faults is presented in Tables 4 and 5.

Table 4: Symmetrical faults.

L-L-L Fault L-L-L-G Fault

ABC ABCG
Source: [4].

Table 5: Asymmetrical faults.

L-G Fault L-L Fault L-L-G Fault

AG AB ABG

BG BC BCG

CG AC ACG
Source: [4].

According to Tables 4 and 5, the data encompassed ten
short-circuit fault categories: AB, BC, AC, ABG, BCG, ACG,
AG, BG, CG, andABC. The study acquired the L-G (AG, BG,
CG), L-L (AB, BC, AC), L-L-G (ABG, BCG, ACG) (asym-
metrical), L-L-L-G (ABCG), and L-L-L (ABC) (symmetri-
cal). The fault detection machine-learning model in power
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Table 3: Risk of bias in studies.

Code References Protocol
Results

Selection
Bias

Detection
Bias

Reporting
Bias

Risk of Bias

1 Akhtar et al. [10] 100% + + + Low risk

2 Turanl, Benteşen. [4] 100% + + + Low risk

3 Maria, Michael. [18] 58% ? - - High risk

4 Omitaomu, Niu. [19] 60% ? ? - Unclear Risk

5 Arévalo, Jurado. [20] 83% + + ? Unclear Risk

6 Wen et al. [21] 67% ? ? - Unclear Risk

7 Wang et al. [22] 83% + + ? Unclear Risk

8 Stock, et al. [23] 75% + ? ? Unclear Risk

9 Zerguit, et al. [24] 83% + + ? Unclear Risk
Source: Taghizad (2024).

transmission systems was the deep network model, namely the
one-dimensional Convolution Neural Network (CNN), with
the input being the MATLAB-Simulink software-generated
datasets. The accuracy levels of fault detection techniques in
power transmission systems are presented in Figure 1. The
ROC’s AUC value for all classes is presented in Figure 2.

The accuracy levels of fault detection techniques
in power transmission systems were an average of 0.98
(98%). The ROC presented an AUC value of 1.0 (100%).

4.5.1.2. Novel Glass-Box-Based Proposed EB
Approach

Akhtar et al. examined novel glass-box machine’s fault
detection in power transmission systems. The study used
the benchmark dataset, which entailed a collection of line
currents and voltage fault conditions on types of faults in
power transmission systems. The data with faults was
modeled using the MATLAB simulator. The study ana-
lyzed signal data for faults in the transmission line. In
the current and voltage analysis over time, the Va voltage
values (ranging between −0.6 and 0.6) indicate no fault,
while the Va values near 0.0 indicate fault. The current
signals over time, such as Ia current near 0.0, indicated no
fault, while Ia values (between−750 and 750) showed the
existence of a fault [10]. The study presented the accuracy
(Acc) levels of fault detection techniques in power trans-
mission systems in Figure 3. The ROC’s AUC value for
all classes is presented in Figure 4.

Akhtar, Atiq, Shahid, Raza, Samee, and Alabdul-
hafith also reviewed the accuracy of the Random Forest
(RF), the Logistic Regression (LR), the Support Vector
Classifier (SVC), and theGatedRecurrent Unit (GRU) [10].

The study presented the accuracy (Acc) levels of fault de-
tection techniques in power transmission systems in Fig-
ure 5. The ROC’s AUC value for all classes is presented
in Figure 6.

4.5.2. Results of All Investigations of Possible
Causes of Heterogeneity Among Study Results

Both studies used in the review utilized the same method-
ology. For example, they tested simulation data to deter-
mine the accuracy of the models they built to detect faults
in transmission lines. Both studies’ approaches were sim-
ilar, including reporting the findings based on ROC and
Confusion matrix.

4.5.3. Results of All Sensitivity Analyses
Conducted to Assess the Robustness of the
Synthesized Results

The robustness of the results was reported based on the ob-
jectives of this paper. The study aimed to test the hypoth-
esis: There is no significant relationship between fault de-
tection machine learning models and the accuracy levels
of fault detection techniques in power transmission sys-
tems. The study established a substantial relationship be-
tween fault detection machine-learning models and the ac-
curacy of fault detection techniques in power transmission
systems. All the models showed acceptable accuracy in
fault detection. Therefore, no sensitivity analyses affected
the robustness of the synthesized results.

4.6. Certainty of Evidence

By using two of the nine selected journals, the research
achieved a reliability of over 0.7. This implied that the
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Figure 1: CNN’s Confusion matrix of public dataset (Acc = 0.98); Simulink dataset with (Acc = 1.00); real dataset (Acc = 0.99).
Source: [4].

Figure 2: CNN’s ROC from public dataset (AUC = 1.00); Simulink dataset (AUC = 1.00); real dataset (AUC = 1.00). Source: [4].

study reviewed sources that adequately informed the study,
and thus, the certainty of evidence was regarded as high.

5. Discussion

5.1. Provide a General Interpretation of
the Results in the Context of Other
Evidence

For simulated data, the results of the RF model were an
accuracy of 0.89, a combination of an average precision
of 0.91, an average recall of 0.89, and finally, an average
FI-score of 0.89. The LR model had an accuracy of 0.63,
a combination of an average precision of 0.63, an average

recall of 0.63, and an average F1-score of 0.63. The SVC
model presented an accuracy of 0.68, which entailed an av-
erage precision of 0.80, an average recall of 0.68, and an
average F1-score of 0.64. CNN’s Confusion matrix from
the simulated dataset was found to have an accuracy of
1.00. Using actual data, the results of the RF model were
an accuracy of 0.90, a combination of an average precision
of 0.92, an average recall of 0.90, and finally, an average
FI-score of 0.88. The LR model had an accuracy of 0.74,
a combination of an average precision of 1, an average re-
call of 0.42, and an average F1-score of 0.59. The SVC
model presented an accuracy of 0.63, which entailed an
average precision of 0.64, an average recall of 0.63, and
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Figure 3: EB approach’s Confusion matrix of the real dataset (Acc = 0.99). Source: [10].

Figure 4: EB approach’s ROC from the actual dataset (AUC = 1.00). Source: [10].

Figure 5: RF’s, LR’s, SVC’s, and GRU’s Confusion matrix from real dataset. Source: [10].
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Figure 6: RF’s and LR’s ROC from real dataset (AUC = 0.97 and 0.58). Source: [10].

an average F1-score of 0.62. The GRU model had an ac-
curacy of 0.92, a combination of an average precision of
0.93, an average recall of 0.92, and an average F1-score
of 0.92. Finally, the EB approach had an accuracy of 0.99,
a combination of an average precision of 0.99, an average
recall of 1.00, and an average F1-score of 1.00. CNN’s
Confusion matrix from the real dataset was found to have
an accuracy of 0.99. For ROC, the study established that
RF’s AUC = 0.97, LR’s AUC = 0.58, EB’s AUC = 1.00,
and finally, CNN’s AUC = 1.00.

The study’s findings align with the findings of Zer-
guit, Youness, and Derrhi, who studied how integrating
AI-enhanced fault detection industrial systems supported
the findings of this study. The author revealed that ad-
vanced neural networks and hybrid models had a higher
accuracy detection than traditional models. Traditional
models include SVM, DT, KNN, and ANN. Regarding ac-
curacy in detecting faults, the SVMmodel’s configuration
presented moderate accuracy. The DT model presented a
relatively lower accuracy. The KNN model showed mod-
erate accuracy. Finally, the ANN model displayed high
accuracy. Advanced Neural Networks included the CNN
model, which showed high accuracy. Unfortunately, the
study was not in line with this study’s findings, given
it considered the GRU as having a high level of accu-
racy [24]. In conclusion, the study confirmed that ad-
vanced and hybrid AI-driven machine learning models
demonstrated superior accuracy in defect detection com-
pared to traditional models and approaches, aligning with
the findings of this research.

5.2. Discuss Any Limitations of the
Evidence Included in the Review

The main limitation of the two sources was the lack of ade-
quate comparison of different models developed to detect
fault. Because of this limitation, this systematic review

was conducted to investigate the accuracy of fault detec-
tion ML models used in electric power transmission lines.

5.3. Discuss any Limitations of the
Review Processes Used

The main limitation presented by the review process is the
insistence on using the most recent studies between 2023
and 2024. Because of this, the findings were restricted
from assessing older studies that could have shaded proper
comparative analysis findings on the differences between
the new and old or traditional ML models.

5.4. Discuss the Implications of the
Results for Practice, Policy, and Future
Research

The study recommends policymakers use the study’s find-
ings to make laws that will guide the development of ML
models with ethical perspectives in their operations. This
will ensure transparency measures to establish fault detec-
tion accuracy since the lesser the accuracy, the higher the
tax cost for the citizens. In addition, the more accurate the
fault detection, the more the government saves as opposed
to traditional models that lead to loss and wastage of elec-
tric power and also as a result of power outages that affect
the economy.

Practically, the study recommends engineers apply
the suggested ML model in fault detection as this will in-
crease work efficiency and reduce wastage of resources
and working hours.

For future researchers, the study recommends ap-
plying the study to address the development of new ML
models for fault detection. By doing so, future researchers
can fill the gaps this study leaves and other studies in
the review.
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6. Conclusions

In conclusion, the fault detection machine-learning mod-
els in power transmission systems included the Random
Forest (RF), the Logistic Regression (LR), the Support
Vector Classifier (SVC), the Gated Recurrent Unit (GRU),
the Convolutional Neural Network (CNN) and the Novel
glassbox-based proposed EB approach whose measure-
ments are presented in Appendix A Table A1. Despite
the findings being adequate, it was established that there
existed a gap caused by the lack of ROC data for the SVC
and GRU models. The study also failed to extract data re-
garding the accuracy of fault detection linked to simulated
data for the GRU model. Finally, the study also failed to
review the TP, TN, FP, and FN data for the CNN model.
Despite these missing elements, the study was adequate to
conclude that the EB approach was the most advanced and
most suitable model for detecting faults in electric power
transmission lines.
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Appendix A

Table A1: Summary of Results.

Models AUC Acc.
Simulated
Data

Acc.
Real
Data

True
Positive

True
Negative

False
Positive

False
Negative

RF 0.97 0.89 0.90 1324 839 237 1

LR 0.58 0.63 0.74 1325 451 625 0

SVU - 0.68 0.63 1069 455 621 256

GRU - - 0.92 1316 887 189 9

CNN 1.00 0.98 0.99 - - - -

EB 1.00 0.99 1324 1064 12 1
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