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Abstract

Dementia is a decline in cognitive function, typically diagnosed when the acquired impairment becomes severe enough to impact
social or occupational functioning. Between no cognitive impairment (NCI) and dementia, there are many intermediate states.
Predictive cognitive impairment can be useful for initiating treatment to prevent further brain damage. Several deep learning-based
approaches have been proposed for the classification of Magnetic Resonance Imaging (MRI) to diagnose Alzheimer’s disease (AD)
or dementia. However, diagnoses of cognitive impairment are not based solely on MRI data but also on other associated factors.
In this study, the aim is to predict cognitive impairment using both neuroimaging markers and other associated factors, employing
a deep learning autoencoder algorithm based on data from a Singapore study. A novel method has been proposed for applying
autoencoders to a multiclass classification task and provide a feature importance analysis. The performance of the autoencoder
model was compared with two widely used machine learning classification algorithms, namely, the multinomial logistic regression
(MLR) and Extreme Gradient Boosting (XGBoost). The results show that the autoencoder algorithm performs well and outperforms
the competing methods.
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|I. Introduction mentia is typically chronic or progressive, often

beginning with a cognitively normal stage or no cognitive
Dementia and cognitive impairment represent a jmpairment (NCI), advancing to mild cognitive impair-
significant public health challenge worldwide [1]. ment (MCI), and eventually leading to AD [3].
According to the Alzheimer’s Association International Early detection and accurate prognosis of this

Conference (AAIC) 2021, an estimated 10 out of every  devastating disease are complex due to its heterogeneous
100,000 individuals develop early-onset dementia echanisms.
(before age 65) each year, amounting to 350,000 new Deep-learning approaches have recently gained trac-

cases annually across the globe. In 2019, Alzheimer’s dis-  tjon in healthcare, with significant applications proposed
ease (AD) and other forms of dementia were ranked as the  for classifying neuroimaging data associated with

7th leading cause of death, based on the World Health Or-  Alzheimer’s disease (AD) and other forms of dementia.
ganization’s report on the top 10 causes of death [2]. De-  Convolutional Neural Network (CNN) first gained promi-
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nence in 2012 by achieving state-of-the-art performance
on the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) [4]. Since then, CNNs have become
the most widely used technique for MRI datasets. In [5],
a CNN was trained from scratch for early detection of
AD. Additionally, [6] developed the DEMentia NETwork
(DEMNET) model based on CNN, which was trained and
tested on various datasets to detect different stages of de-
mentia from MRI and address the issue of class imbal-
ance. In [7], AlzeimerNet was introduced, a fine-tuned
CNN classifier capable of identifying five stages of AD.
Moreover, a deep residual neural network combined with
other transfer learning techniques was trained in [8] for
categorizing AD. Lately, [9] proposed an unsupervised
convolutional autoencoder network for classifying AD
and normal controls. [10] presented a method for classify-
ing or distinguishing AD using a support vector machine
(SVM) combined with a feature selection technique. [11]
employed a machine learning model integrated with an ar-
tificial neural network (ANN) algorithm to predict cogni-
tive impairment based on the neuropsychological test data.
In [12], a combined approach of machine learning and
semi-parametric survival analysis was used to estimate the
relative importance of 52 predictors in forecasting cogni-
tive impairment and dementia within a large, population-
representative sample of older adults. [13] proposed a
multitask weakly-supervised attention network (MWAN)
for the joint regression of multiple clinical scores from
baseline MRI scans. [14] introduced a novel DCGAN-
based Augmentation and Classification (D-BAC) model
approach for identifying and classifying dementia into var-
ious categories based on MRI scan prominence and sever-
ity. Finally, [15] conducted a comprehensive comparative
study of various generative pipelines including Genera-
tive Adversarial Networks (GANs), Variational Autoen-
coders, and Diffusion Models, to address data scarcity
and related challenges. Generally, deep neural networks
have demonstrated performance equal to or surpassing
that of clinicians in many tasks, due to the rapid growth
in available data and computational power. In this pa-
per, we aim to develop deep learning algorithms for clas-
sifying cognitive impairment using a process similar to
clinician diagnoses. Clinicians diagnose cognitive impair-
ment or dementia not only by evaluating MRI but also
by considering other associated risk factors such as de-
mographic information and cardiovascular health. There-
fore, in this study, the aim is to classify cognitive im-
pairment based on both neuroimaging markers and asso-
ciated risk factors. To the best of our knowledge, this
approach is novel in the field of cognitive impairment
classification.

The primary deep learning algorithm used in this
study is the autoencoder which was first introduced in [16].
An autoencoder is an unsupervised ANN algorithm that
aims to produce output identical to its input. Its architec-
ture consists of two main components: the encoder and
decoder. The encoder compresses the input data into a
lower-dimensional space, known as the latent space. The
compressed data is then passed to the decoder, which re-
constructs the original data. Ideally, the output of the
decoder (the reconstructed data) should closely match
the input data. The difference between the input data
and reconstructed data is called reconstruction error. A
smaller reconstruction error indicates a higher similarity
between the reconstructed data and original data. Au-
toencoder is commonly used for anomaly detection and
have been shown to perform well in detecting anomalies
in brain MRI (see [17] for more details). For anomaly
detection, the autoencoder is typically trained using nor-
mal data only. For a new observation, if the reconstruc-
tion error exceeds a threshold, it is called an anomaly.
However, determining this threshold is challenging and
can be subjective. To address this issue, we propose
a novel approach using an autoencoder that can handle
classification problems without requiring a predefined
threshold.

The main contributions of this study are as follows.
First, we developed an innovative method that extends
the use of the autoencoder beyond traditional unsuper-
vised tasks to include multiclass classification, enabling
the identification of intermediate cognitive impairment
states rather than limiting the analysis to a binary clas-
sification of dementia. This advancement expands the
autoencoder’s capabilities and enhances its utility across
various domains. The method tackles the significant chal-
lenge of determining an appropriate threshold for the re-
construction error, a common issue when using autoen-
coders for anomaly detection. The classification results,
demonstrate the effectiveness of our proposed approach
in handling multiclass classification tasks. Secondly, this
work is based on a Singapore study, where the subjects
were drawn from a population-based cohort. Unlike previ-
ous studies, both neuroimaging markers and various risk
factors were considered in the analysis. By incorporat-
ing demographic and cardiovascular risk factors along-
side MRI data, our approach mirrors more closely the
clinical diagnosis process for cognitive impairments in
real-life scenarios. Finally, we propose a method for ob-
taining feature importance analysis from this autoencoder-
based classifier. The important features identified by our
method are consistent with those derived from existing
classifiers.
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The rest of the paper is organized as follows.
Section 2 gives a brief overview of demographic infor-
mation, risk factors, neuroimage markers and exploratory
data analysis of the dataset used in this study. Section 3
details the methods and experiments applied in this study,
in particular, the application of the autoencoder algorithm
for multiclass classification problems and the method for
obtaining feature importance is outlined. The classifica-
tion results are given in Section 4 and the conclusions and
future work are presented in Section 5.

2. Data & Materials

2.1. Overview

This study was conducted using the data from the Epidemi-
ology of Dementia in Singapore (EDIS) study. Partici-
pants, aged 60—90 years, were drawn from the Singapore
Epidemiology of Eye Disease (SEED) study, a population-
based study involving Chinese (Singapore Chinese Eye
Study [SCES], [18]), Malays (Singapore Malay Eye Study
[SiIMES-2], [19]), and Indians (Singapore Indian Eye Study
[SINDI-2], [20]). The dataset contains n = 864 subjects
with p = 67 variables, including subject ID, diagnosis, de-
mographic information, risk factors, neuroimaging mark-
ers and assessment scores used for evaluating cognitive
impairment and dementia. Cognitive Impairment No De-
mentia (CIND) was defined as impairment in at least one
domain of a neuropsychological test battery (NTB), which
assesses seven domains, including five non-memory and
two memory domains. CIND mild was diagnosed when
no more than two domains were impaired, while CIND
moderate was diagnosed when more than two domains
were impaired. For more details, see [18] and [21]. Thus,
the subjects can be categorized into four classes based
on their diagnosis of cognitive impairment and dementia,
namely, NCI, CIND mild, CIND moderate, and Dementia.
Since the test scores were used for diagnosing cognitive
impairment, they were excluded from the prediction mod-
els. As aresult, we manually selected p = 25 variables for
this study. Further, the observations were removed with
missing values and potential outliers. For each class, val-
ues beyond three standard deviations from the mean were
considered outliers, and observations containing outliers
were removed. As aresult, 78 observations were excluded
from the dataset.

The cleaned dataset comprises n = 786 observations:
n; = 238 with NCI, n, = 258 with CIND mild, n3 = 263
with CIND moderate, and ny = 27 with Dementia. Due
to the low number of dementia cases, as suggested by
the clinicians, CIND moderate and Dementia were com-
bined into a single category for classification analyses,

referred to as the CIND moderate/Dementia group. The
exploratory data analysis involved grouping the variables
into three clusters, namely, basic demographic informa-
tion, risk factors, and neuroimaging markers. For categor-
ical variables, the contingency table was displayed, and
Pearson’s chi-squared test was conducted to determine
whether the distribution of counts for those diagnosed
with and without cognitive impairment differs. For contin-
ues variables, we plotted boxplots and performed pairwise
Student’s -test [22] to assess whether the means for differ-
ent groups are significantly different. The detailed results
of the exploratory data analysis for these three clusters
are presented in the following subsections. Note that the
prevalence of any cognitive impairment was calculated as
(n; + n3 + ng)/n, representing the proportion of subjects
with either CIND mild, CIND moderate, or Dementia.

2.2. Basic Demographic Information

This subsection includes basic demographic information
about the subjects, such as age, race, gender, and educa-
tion level. For age, we categorized the continuous vari-
able into three groups, namely, 60—69 years, 70—79 years,
and 80 years and older. There are 396 individuals aged
between 60—69, 315 aged between 70—79, and 75 aged 80
and above. The prevalence of any cognitive impairment
(in %) for each feature is displayed in Table 1 below.

From Table 1, several conclusions can be drawn.
Firstly, adults over 80 years of age have the highest preva-
lence of cognitive impairment at 97.33%, followed by
those aged 70-79 years at 79.68%, and those aged 60—69
years at 56.57%. As age increases, the prevalence of any
cognitive impairment increases. Secondly, the Chinese
have the lowest prevalence of cognitive impairment at
57.20%, whereas the Malay have the highest prevalence,
at 81.82%. Thirdly, females have a higher prevalence
of cognitive impairment (76.37%) compared to males
(62.13%). Finally, adults with tertiary education have the
lowest prevalence for cognitive impairment at 40.24%,
whereas those with no education (labelled as ‘Nil’) have
a prevalence of 91.03%. As the level of education in-
creases, the prevalence of cognitive impairment decreases:
72.49% for primary education, 60.95% for secondary ed-
ucation, and 40.24% for tertiary education. Notably, no
participants with tertiary education were diagnosed with
dementia. This suggests that a higher level of education
is associated with a lower likelihood of being diagnosed
with cognitive impairment.

2.3. Risk Factors

In this subsection, we examined risk factors including
Body Mass Index (BMI), smoking history, stroke history,
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Table I: Demographic information.

Feature Category NCI ?\/1111\11(11) M((i(llljlz te Dementia Total Pr(‘:rla‘!/i I)lce
60-69 172 144 78 2 396 56.57
Age 70-79 64 97 139 15 315 79.68
>80 2 17 46 10 75 97.33
Chinese 113 75 72 4 264 57.20
Race Indian 77 98 79 4 264 68.56
Malay 48 85 112 19 258 83.72
Female 99 126 172 22 419 76.37

Gender

Male 139 132 91 5 367 62.13
Nil 14 35 92 15 156 91.03
Education Primary 93 124 111 10 338 72.49
Level Secondary 82 75 51 2 210 60.95
Tertiary 49 24 9 0 82 40.24

and diagnosis of diabetes, hyperlipidemia, or hyperten-
sion. We categorized the continuous BMI values into four
groups: underweight (below 18.5), normal (18.5-24.9),
overweight (25.0-29.9), and obese (30.0 and above).
Table 2 displays the prevalence of cognitive impairment
for each of these risk factors.

According to Table 2, most participants have a nor-
mal BMI. Adults who are underweight exhibit the most
prevalence of cognitive impairment at 89.29%, followed
by those who are obese 76.15%. Additionally, non-smokers
have a slightly higher prevalence of cognitive impairment
(70%) compared to smokers (68.93%).

Pearson’s chi-squared test was conducted to deter-
mine if there is a difference in the distribution of cog-
nitive impairment diagnoses between non-smokers and
smokers. The p-value is 0.8428 which is significantly
larger than 0.05, indicating no significant difference in
the prevalence of cognitive impairment between smokers
and non-smokers. It is important to note that this result
is based on the study conducted in Singapore, where high
tobacco taxes and prices lead to fewer smokers. Addi-
tionally, adults with a history of stroke, diabetes, hyper-
lipidemia, or hypertension show a higher prevalence of
cognitive impairment compared to those without these
medical conditions.

2.4. Neuroimage Markers

The neuroimage markers in this dataset include the vol-
umes (in mm) of total intracranial (ICV), total grey and
white matter (GWM)), total grey matter (GM), total white
matter (WM), total white matter lesions (WML), left hip-

pocampus (LH), and right hippocampus (RH). These mea-
surements were obtained from MRI scans and assessed by
radiologists in the EDIS study. Due to high correlations
between GWM, GM, and WM, as well as between LH and
RH, we present the distributions for ICV, GWM, WML,
and LH here. Boxplots of these neuroimaging markers
across different classes are shown in Figure 1 below.

The white dot in each boxplot represents the mean
value. It is observed that, except for WML, the mean val-
ues of the neuroimaging markers decrease from NCI to
CIND mild, then to CIND moderate, and finally to De-
mentia. Adults with dementia show significantly larger
volumes of WML compared to the other groups.

To further investigate whether the mean values of
the volumes of ICV, GWM, WML, and LH differ signifi-
cantly among the four groups, we conducted six pairwise
Student’s t-tests. We first performed Bartlett’s test [23]
to assess the equality of variances between the groups.
Based on the results, the appropriate Student’s ¢-test was
applied, either assuming equal or unequal variances. The
p-values of these tests are shown in Table 3. The results
show that the mean ICV in the NCI group differs sig-
nificantly from that in the other three groups, indicating
that ICV volume decreases as cognitive impairment pro-
gresses. Similar conclusions can be drawn for the volume
of GWM. The volumes of WML and LH show highly sig-
nificant between groups, suggesting that they may be key
measures for detecting cognitive impairment. A signifi-
cant level of 0.05 was used, with p-values smaller than
0.05 highlighted in bold. The results show that the mean
ICV in the NCI group differs significantly from that in the
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Figure I: Boxplots of the volumes (in mm) of ICV, GWM, WML and LH.

other three groups, indicating that ICV volume decreases
as cognitive impairment progresses. Similar conclusions
can be drawn for the volume of GWM. The volumes of
WML and LH show highly significant between groups,
suggesting that they may be key measures for detecting
cognitive impairment.

In addition to the volumes, this dataset includes
other neuroimaging markers, such as the number of la-
cunes, cortical cerebral microinfarcts (CMI) numbers, cen-
tral atrophy rate, number of cortical infarcts, and number
of stenosed artery. The analysis results are displayed in
Table 4 below.

Adults with any of the following conditions—lacunes,
CMI, or stenosed arteries—exhibit a higher prevalence
of cognitive impairment compared to those without these
conditions. Additionally, adults with severe central atro-
phy rates show the highest prevalence of cognitive im-
pairment, while those with cortical infarcts also have a
higher prevalence of cognitive impairment. Regarding
the number of cortical infarcts, individuals with corti-
cal infarcts are more likely to have cognitive impairment.
However, due to class imbalance, it is not possible to con-
clusively determine this relationship without hypothesis
testing. Therefore, we performed Pearson’s chi-squared
test, and the p-value is 0.2077. This indicates that there
is no significant difference in the prevalence of cognitive

impairment between individuals with and without cortical
infarcts.

3. Methods and Experiments

3.1. Overview of the Methods Used

In this section, three classifiers, namely, multinomial lo-
gistic regression, XGBoost, and Autoencoder have been
applied to a three-class classification task. The sample
sizes for the three groups were 238, 258, and 290, respec-
tively. The cleaned dataset was split into two parts: 80%
was used for training and the remaining 20% was used for
testing. The experiment was performed on Windows 10
Pro using Python (version 3.9.6) on a 2.3 GHz intel core
17, with 4 cores and 16 GB RAM. An overview of the re-
search framework for our study is shown in Figure 2 below.

3.2. Multinominal Logistic Regression

The Logistic Regression (LR) is a powerful supervised ma-
chine learning algorithm used for binary classification prob-
lems. The Multinomial Logistic Regression (MLR) [24],
also known as softmax regression, is a classification method
that extends the Logistic Regression to handle multiclass
problems. It estimates the probability of each category
relative to a reference category by applying the softmax
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Table 2: Risk Factors.

CIND CIND . Prevalence
Feature Category NCI Mild Moderate Dementia Total (in %)
Underweight 3 8 14 3 28 89.29
Normal 120 118 110 11 359 66.57
BMI
Overweight 89 100 92 9 290 69.31
Obese 26 32 47 4 109 76.15
Ever 64 73 66 3 206 68.93
Smoking history
Never 174 185 197 24 580 70.00
Stroke Yes 6 12 18 4 40 85.00
history No 232 246 245 23 746 68.90
Yes 75 97 109 12 293 74.40
Diabetes
No 163 161 154 15 493 66.94
Yes 163 194 214 19 590 72.37
Hyperlipidaemia
No 75 64 49 8 196 61.73
Yes 174 203 229 26 632 72.47
Hypertension
No 64 55 34 1 154 58.44

Table 3: p-values of pairwise t-tests for the volumes (in mm) of total intracranial (ICV), total grey and white matter (GWM), total
white matter lesions (WML), and left hippocampus (LH).

NCI vs. CIND NCIvs. CIND NCI vs. CIND Mild vs. CIND Mild vs. Moggll'\ixlt)e vs
Mild Moderate Dementia CIND moderate Dementia L
Dementia
ICV 0.0041 <0.0001 0.0084 0.1007 0.1057 0.4892
GWM 0.0016 <0.0001 0.0023 0.0873 0.1226 0.4330
WML 0.0029 <0.0001 0.0004 0.0005 0.0013 0.0084
LH 0.0181 <0.0001 <0.0001 <0.0001 <0.0001 0.0144
Table 4: Other neuroimaging markers.
CIND CIND . Prevalence
Feature Category NCI Mild Moderate Dementia Total (in %)
0 223 216 200 13 652 65.80
No. of lacunes
>0 15 42 63 14 134 88.81
0 232 247 243 20 742 68.73
CMI numbers
>0 6 11 20 7 44 86.36
None 24 37 10 0 71 66.20
Central Mild 169 164 148 8 489 65.44
atrophyrate Moderate 42 51 90 15 189 78.39
Severe 2 6 15 4 27 92.59
No. of cortical 0 235 250 255 26 766 69.32
infarcts >0 3 8 8 1 20 85.00
No. of stenosed 0 216 226 221 18 681 68.28
artery >0 22 32 42 9 105 79.05
Zhu et al. Computing&Al Connect
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Figure 2: Framework of the study.

function to a set of linear predictors, resulting in probabili-
ties that sum to one. The model calculates log-odds ratios
for each category in comparison to the reference category,
with coefficients estimated through maximum likelihood
estimation.

Before building the MLR models, it is essential to
ensure that the following two key assumptions have been
satisfied:

(a) The independent variables should be independent of
each other, meaning the model should have little or
no multicollinearity.

(b)  Only meaningful variables should be included in the

model.

Therefore, we first removed variables that were highly
correlated, defining high correlation as an absolute value
greater than 0.7. For example, since the volumes of the LH
and RH were highly correlated, we removed the RH vol-
ume from the dataset. After eliminating these highly cor-
related variables, we normalized the cleaned dataset. For
numeric variables, we applied Z-score normalization, and
for categorical variables, we used label encoding, which
converts each category value into a numerical label. The
numerical labels range from 0 to the number of categories
minus one. We used the training dataset to build the MLR
model, initially including all variables. The optimal MLR
model was determined manually by sequentially remov-
ing variables until all remaining regression coefficients
were significantly different from 0 at the chosen alpha
level of 0.05. This MLR analysis was performed using
the Python library Scikit-learn [25,26].

3.3. Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a scalable, end-
to-end tree boosting system introduced in [26], designed
to implement gradient boosted decision trees with a focus
on speed and performance. It has recently become a domi-
nant method in applied machine learning methods for tab-
ular data. Instead of fitting a single large tree, XGBoost
uses an ensemble of smaller trees, each built sequentially

Prediction of
Cognitive
Impairment

Split the target
dataset

* 80%: training data

o 20%: test data * Multinomial Logistic

Regression
* XGBoost
* Autoencoder

based on the residuals of the previous trees. Specifically,
after adding a new tree, XGBoost adjusts the residuals
of the previous model to correct errors and improve per-
formance in areas where the model previously struggled.
This approach helps reduce overfitting by using an ensem-
ble of shallow trees rather than relying on a single large
tree, which also aids in better generalization. In addition
to its strong predictive capabilities, XGBoost allows for
the evaluation of input variable importance. We imple-
mented the XGBoost algorithm using the Python libraries
Scikit-learn [25] and xgboost. The parameters in our ex-
periment were set as follows:

(a)  Subsample ratio of columns when constructing each
tree: between 0 and 0.3

(b) Minimum loss reduction required to make a further
partition on a leaf node: between 0 and 0.5

(¢) Boosting learning rate: between 0.01 and 0.05

(d) Maximum tree depth for base learners: integers be-
tween 1 and 4

(e) Number of boosting rounds: integers between 200
and 500

(f)  Subsample ratio of the training instances: between
0.8 and 1

The hyperparameters were tuned using cross-validation.
To prevent overfitting, early stopping was employed. The
model stops if the score does not improve after 5 rounds.

3.4. Autoencoder

An autoencoder is an unsupervised ANN algorithm that
aims to produce output identical to its input. As outlined
in Section 1, the architecture of an autoencoder is struc-
tured to learn efficient representations of the input data.
When used for anomaly detection, setting a threshold for
the reconstruction error is crucial but can be challeng-
ing and subjective as well. Therefore, to address this is-
sue in the multiclass classification problem, we trained
k autoencoder models in this study, one for each class,
rather than training a single autoencoder model solely
on normal observations. For example, there are three
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classes in this study, that is, NCI, CIND mild, and CIND
moderate/Dementia. We therefore train three separate au-
toencoder models, each using data from one of the three
classes. For any new observation, we compute three recon-
struction errors by inputting it into the three trained autoen-
coder models, respectively. The new observation is then
assigned to the class with the smallest reconstruction error.
The architecture of the autoencoder is detailed as
follows. The categorical variables were represented using
one-hot encoding, and the entire dataset was normalized
into range [—1, 1] using min-max normalization. The au-
toencoder models used in this study are structured with
fully connected networks for both the encoder and de-
coder. Each autoencoder includes one fully connected
hidden layer, with batch normalization [27]. The activa-
tion function of the decoder’s last layer is Tanh, while
LeakyReLU [28] with a negative slope of 0.2 is used for
the hidden layers. To prevent overfitting, dropout [29] is
applied to each hidden layer. Mean Square Error (MSE) is
used as the reconstruction error metric. The autoencoder
was implemented using the Python deep learning library,
PyTorch [30], and its detailed structure can be found in
the source available online (https://github.com/Tianming-
Zhu/BrainMRI/blob/main/Code/tac. TM.py).  Hyperpa-
rameter optimization is performed using Optuna [31]. For
all three autoencoders, the optimal models were config-
ured with a hidden layer width of 24, an embedding space
dimension of 12, and a batch size of 100. The learning
rate is set to 0.005 for the NClI-autoencoder and CIND
moderate/Dementia-autoencoder, while it is slightly higher
at 0.008 for the CIND mild-autoencoder. The number of
epochs is 700 for the NCl-autoencoder and CIND
moderate/Dementia-autoencoder, and 600 for the CIND
mild-autoencoder. The dropout rates for the three classi-
fiers are set to 0.15, 0.1, and 0.2, respectively.
Understanding the feature importance by analyzing
the latent space of the trained autoencoder model is also
crucial. This study proposes an intuitive method for esti-
mating the feature importance based on the latent space
representations learned by the trained autoencoder. Let

the input data be represented as x = (x1, ... 7xp)T, where
p is the number of input features, and let the corresponding
latent space be represented as z = (zy, . . ., zm)T, where m

is the dimensionality of the latent space and m < p. The
latent representation can be written z = f(x), where f(-)
is the function learned by the encoder part of the autoen-
coder, capturing the compressed, most informative fea-
tures of the data.

To estimate feature importance, the following pro-
cedure is followed after training the autoencoder. Firstly,
we normalize the identity matrix I, using the min-max
normalization, scaling the entries of the identity matrix

to the range of [—1, 1], and input it into the trained en-
coder. The identity matrix has ones on the diagonal and
zeros elsewhere, which effectively “activates” each fea-
ture individually. Each column of I, corresponds to one
input feature being set to 1, while all other features are
set to 0. The resulting encoded data corresponds to the la-
tent space representation z; for each featurei,i=1,...,p,
and can be used to quantify the importance of each feature.
To calculate the importance of each feature, we compute
the mean absolute value of the corresponding elements in
the latent representation z; Specifically, for each feature
i, its importance is calculated as m~' "% | |z;], where z;
represent the value of the j-th latent variable in the en-
coded representation for the i-th feature. The larger the
absolute values of the elements in z;, the more influen-
tial the corresponding feature is in determining the latent
representation. Hence, features with larger mean absolute
values in the latent space are considered more important
for the model’s encoding process. For example, to ac-
cess the importance of the first feature, we would input
x = (1,0,..., O)T into the trained encoder, meaning only
the first feature is “activated”. The resulting latent repre-
sentation z; captures how this single feature influences the
encoded space, and the mean absolute value of z; quanti-
fies its importance.

4. Results and Discussion

This subsection represents the results of the three-class
classification problem using the proposed autoencoder al-
gorithm alongside MLR and XGBoost. In the test dataset,
which contains 158 observations, 45 are from the NCI
class, 50 from the CIND mild class, and 63 from the CIND
moderate/Dementia class. Various performance metrics,
including overall accuracy, precision, recall, and F1-score,
were used to evaluate the performance of MLR, XGBoost
and the autoencoder. Except for overall accuracy, the
other three metrics are used for binary classification and
compute the relationship between the true positives (TP),
true negatives (TN), false positives (FP), and false nega-
tives (FN) classified by the model. The equations below
show how to calculate these metrics for each class:

i TP _ TP
Precision = 15 55, Recall = 73 TN
_ 2TP
and F1_score = sy

Figure 3 below displays the confusion matrices provided
by MLR, XGBoost and the autoencoder, with ‘0’ repre-
senting the NCI group, ‘1’ representing the CIND mild
group, and ‘2’ representing the CIND moderate/Dementia
group. The detailed values for overall accuracy, precision,
recall, and F1_score are presented in Table 5.
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Figure 3: Confusion matrix given by (a) MLR, (b) XGBoost and (c) Autoencoder.
Table 5: Classification results given by MLR, XGBoost and the Autoencoder.
MLR XGBoost Autoencoder
Precision Recall F1 Precision Recall F1 Precision Recall F1

NCI 0.49 0.62 0.55 0.51 0.60 0.55 0.70 0.62 0.66
CIND mild 0.46 0.32 0.38 0.43 0.24 0.31 0.49 0.74 0.59
CIND . 0.65 0.68 0.67 0.60 0.73 0.66 0.79 0.52 0.63
moderate/Dementia
Overall Accuracy 0.5506 0.5380 0.6203

Several conclusions can be drawn from Figure 3 and
Table 5. First, the autoencoder outperforms the other two
machine learning methods in terms of overall accuracy
and precision, achieving the highest accuracy at 0.6203,
and the highest precision across all three groups. Notably,
the proposed autoencoder classifier excels in classifying
observations from the CIND mild group. As shown in
Figure 3, the autoencoder achieves the best performance
in correctly classifying the CIND mild group, while MLR
and XGBoost only correctly classify 16 and 12 observa-
tions, respectively. In contrast, MLR and XGBoost more
accurately classify observations from the CIND moder-
ate/Dementia group, as seen from Figure 3, with 43 and
46 correctly classified observations, respectively. This is
likely due to the clearer distinction between CIND mod-
erate/Dementia and the other groups, such as CIND mild
and NCI. However, the autoencoder classifier effectively
differentiates between CIND mild and NCI, benefiting
from its independent training on each class. This capabil-
ity is crucial for accurately classifying cognitive impair-
ment at various levels. Additionally, the autoencoder also
achieved the highest F1-score for the NCI and CIND mild
groups, and a comparable Fl-score with the other two
competitors for the CIND moderate/Dementia group.
Based on the feature importance provided by these
three classifiers, several insights can be gathered. Firstly, all
three classifiers—MLR, XGBoost, and the autoencoder—
consistently indicate that basic demographic information

and neuroimaging markers are more important than the
risk factors. Specifically, the final MLR model includes
all four demographic variables and two neuroimaging
markers (WML and LH). Among the top 10 features iden-
tified by XGBoost, two are demographic variables (Age
and Education Level), seven are neuroimaging markers,
and another one is BMI. The feature importance derived
from the autoencoder aligns well with those from MLR
and XGBoost, highlighting the significance of the four de-
mographic variables in detecting cognitive impairments.
Additionally, beyond WML and LH, the autoencoder also
highlights the importance of the number of cortical in-
farcts and the number of stenosed arteries. These results
are consistent with the exploratory data analysis, pre-
sented in Section 2.

5. Conclusions and Future Work

In this study, a deep learning autoencoder algorithm was
utilized in combination with two machine learning classi-
fiers, namely MLR and XGBoost, to predict cognitive im-
pairment using data from a study conducted in Singapore.
A novel approach has been propsoed that leverages the
autoencoder for multiclass classification problems, elimi-
nating the need to determine a threshold for reconstruction
errors. The classification results demonstrate that the au-
toencoder outperforms the other two classifiers in terms of
overall accuracy and excels particularly in classifying ob-
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servations from the CIND mild group. Additionally, we
introduced a new method for deriving feature importance
from the autoencoder classifier, which aligns well with the
feature importance identified by MLR and XGBoost. The
results indicate that basic demographic information and
neuroimaging markers are more crucial than risk factors.

The EDIS study collected participant information
through questionnaires, physical examinations, and labo-
ratory tests. The findings from this study could inform the
redesign of the questionnaire to make it more concise and
accurate. Additionally, reducing the number of domains
tested in the NTB assessment, which takes about an hour
per person, could save significant time and resources. Fur-
ther research in this direction, including comprehensive
brain region segmentation and the selection of critical re-
gions using advanced methods, is warranted.

The method is straightforward, and the necessary
features are easy to collect. However, the limitations of
the dataset affected classification accuracy and the com-
prehensiveness of predicting cognitive impairment using
neuroimaging markers. The dataset includes only the to-
tal volumes of ICV, GWM, WML, GM, WM, LH, RH,
and cerebrospinal fluid, many of which are highly corre-
lated and may not fully capture the complexity of brain
MRI information. Image segmentation to obtain volumes
of all brain regions is necessary. Identifying significant re-
gions for predicting cognitive impairment using machine
learning and deep learning methods is an area of future in-
terest. Additionally, it would be valuable to compare our
proposed classifier with deep learning methods discussed
in Section 1, such as CNNs, in future work.
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