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Abstract

The sheaf cohomology of topological shift for the block-rectangular matrix-
representation of the hierarchical Markov Model is endowed with the analytical
codification of white noise and of random effects.

New analytical techniques for fragment sequencing are developed. The frag-

ment sequencing is obtained after the topological Markov chain of the adjacency
matrix of the corresponding undirected graph; the presence of white noise and
that of random effects are comprehended. The paradigm consists in defining
the hierarchical block rectangular matrices, from which the Topological Hid-
den Markov Models are issued (as clusters), with the aspects of Hidden Markov
Models of 'multivariate Gaussian data’ with vanishing mean; the generalized co-
variance matrix is studied. The model is compared with the stochastic proper-
ties of the corresponding decomposition of approximation of experimental data.
One of the previous results of the applications of the new method can be looked
at in the analysis of the numerical simulation of the sequencing techniques: as
an example, it is known that the Gojobori-Ichii-Nei model fails in reproduc-
ing the Jukes-Cantor scheme, while the Kimura matrix model succeeds in it.
The difference is explained as the former model is not obtained from the Jukes-
Cantor paradigm after application of the differential operators (for substituting
the entries of the matrix), while the latter model is.

In the present paper, the new analytical result is further accomplished, to cal-
culate the maximal likelihood analytically in protein sequencing and in DNA-
sequencing, in modes in which the sequences of elements varies in time; the
method solves analytically the phylogenetics computer programs.

The analysed problem belongs to the nondeterministic polynomial time (NP)
hard class of complexity.
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1 Introduction

The interrogation of [1] from [2] is in the present paper answered.

The interrogation of [1] from [2] consists in defining the well-posed-ness of the
comparison of contact maps with different bin sizes. The relevance of the over-
lapping of the contact maps is that it allows for the comparison of graphs (and
of all the related structures, i.e., such as distances.)

The further interrogation about white noise in [3] and about random effects [4]
are codified within the same paradigm.

As recalled from [5], solving the problem of contact-maps overlap belongs to the
NP hard class of complexity [6], [7].

A visual method for comparing adjacency matrix is proposed in [8].

The answer to the interrogation of [1] is here provided with analytically ac-
cording to the following strategy: a (topological Markov) chain is build for the
network from the hierarchical block rectangular matrix, where the white noises
and the random effects are present, where the clusters are contained: the prob-
lem of [1] is solved after proving that the topology of the manifold on which the
chain is issued is one with Hilbert metric. The answer to the interrogation of [1]
is therefore here newly found analytical; for these purposes the new paradigm
in topology was created- the numerical methods are not in the present paper
used.

The tasks of graph matching are being afforded in the present guidelines of
investigation according ot several methodologies. A spectral method for these
purposesisdevelopedin [§].

The adjacency matrix of the graphs to be compared is analyzed ibidem as far
as the leading eigenvector (only) is concerned. The sequences are matched after
developping the nodes of the graph for these sequences to be aligned.

The corresponding Markov chain is established, which taken into account the
leading eigenvector of the adjacency matrix only.

One of the main difference between the method proposed in the preset paper
and that proposedin [8] is that, in the here-adopted formalism, the sequence

order does not ned to be re-aligned a posteriori.

Indeed, the approach of [8] relies on reappreciating the paradigms of segmenta-
tion and those of grouping.

In the here-represented analysis, the isolated segments can be put into block-
matrix representation.

Another limitation of [8] is that is descends from the methods developped in

[9]. In [9], graphsof the same size only can be compared. Unaccordingly,

in the present analysis, graphs of different sizes are made to be compared in
univoque correspondence with the pertinent block matrix.

One further discrepancy with the work of [8] is that the point-proximity matrix
isanalysed, and its eigenvectorsare considered, i.e., asfrom [10], after [11]; asa
result, only the Gaussian weighted distances between points can be calculated.
The several point sets are compared after the patterns of eigenvectors corre-
sponding to different sequences; the comparison is produced after juxtaposing
the 'immanental polynomials of the Laplacian matrix of the ’'line connectivity
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graphs|[12].

Local topological spectra are considered after [13].

One of the attempts to codify the white noise within chains relies in the time-
series expansion, i.e. as last proven in [3] for Markov chains. Differently, int he
present paper, the white noise of topological shifts is codified in matrix repre-
sentation.

In [4], the further interrogation is posed, about which items of information have
to be added to a model for achieving the Markov representation of random ef-
fects; the tasks is in the present paper accomplished.

Differently, in the pairwise Euclidean distance [14] is applied to explain the dif-
ferential behaviour of clusters with respect to white noise and to random effects
after the use of the dissimilarity matrix. The clusters are therefore described
as topological Hidden Markov Models, on which the Cameron-Martin distance
applies. Two methods of fragment sequencing are proposed starting from the
new formalism developped in [15]: onemethod consists in extending the Jukes-
Cantor model after [16]; onemethod consists in modelling the fragment: both
methods comprehend the construction of the fragment for the states of the
probability space from the application of the suitable Morse operators from a
starting pairwise sequence [17]. The filtration of the probability space is deter-
mined after the definition of Hidden Markov Models of 'multivariate Gaussian
data’ from [18] (i.e. Topological Hidden Markov Models), from which the in-
dicationsfrom [19] and those from [20] are applied. The application of these
indications has to be compared with the new techniques developedin [21].
Furthermore, starting from [17], white noise and random effects are included
within the analytical representation.

The paper is organized as follows.

In Section 2, the methodology is exposed: the analytical tools for fragment se-
quencing are recalled, and the theorems for the singular-value decomposition of
ordered block matrices are reviewed.

In Section 3, the new results are presented: the definition of the chain from the
contact map in the presence of random effects and white noises is newly estab-
lished, and the the Topological Hidden Markov Models (of clusters) are built.
Further results in sequencing are presented: the further interrogation from [22]

is newly analytically solved, about how maximize the likeli-hood in DNA se-
quences and in protein sequences when the substitution of nucleotides or that
of amino- acids varies with time. The technique, in particular, substitutes the
phylogenetics-programming codes. Moreover, applications in machine learning
are theoretized.

In Section 4, applications are achieved, such as the application of Dirichlet
forms to obtain a vanishing multivariate distribution mean analytically, and the
paradigm for the construction of the models (i.e. independently of the measure
for the comparison with [21] to be consistent); asoneresult, the interrogation

of [1] after [2] is answered.

In Section 6,the Conclusions are presented.
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2 Methodology

2.1 Fragment-sequencing

In the present Section, I summarize the interrogation raised in [1] after [2].
Definition 1:

Let a ’bin’ be a vector of consecutive fragments; more in detail, let @ = (a1, asg, ..., ag)
be a row vector with k fragments. The bin with one fragment is denoted as
b= (b1,b2,....,b).

Definition 2:

The contact frequency fqp is defined as

1=k j=l

fab = Zzeaibj (1)

i=1 j=1

with eq;p; the number of ligation” events between fragments, and, in the present
case, between fragment a and fragment b.

The contact map is defined as the matrix whose entries correspond to pairwise
‘contact frequencies’ between two vectors of bins. The definition of the contact-
map matrix is taken from [23] p.26 is taken as

Definition 3:

A contact map is a matriz M whose entries m;; = 0 if f the Buclidean distance
between the two elements (of the sequence) i and j is less than or equal to a pre-
assigned threshold t.

It is here noticed that, differently, in [1], m;; is usually assigned a value 1 when
the distance is less than a threshold.

An alternative definition of contact mapisissued from [24] as

Definition 4:

A contact map is a square, symmetrical matriz of pairwise contact of residues;
this definition is therefore apt for the definition of the pairwise sequencing.
The analysis from [1] is here reappraised.

Let 7 be the row vector of m consecutive bins, i.e. p'= (p1,p2, ..., Pm)-

Let ¢ be the row vector of n consecutive bins, i.e. 7= (q1,q2, .-, ¢n)-

Clearly in the notation vector p and the vector ¢ are of non-identical dimensions.
This is a peculiarity descending from rectangular matrices, which are applied
to the task of fragment sequencing within clusters. Definition 5:

A is the contact-map (matriz) whose entries

aij = fquj (2)

with 1 < i <m, 1 <j <m when all the bins are in p and those in .
Definition 6:

Clis contact maps are contact maps obtained in the case when all the bins form
p and those form ¢ are from the same fragment.

Definition 7:

Trans contact maps are contact maps obtained in the case when all the bins form
P and those form § are not from the same fragment.
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The hierarchical structure of clusters is more apparent after the comparison
with [1].

Given all the parameterizations in the above, the scenario is ready for the defi-
nition of contact networks.

Definition 8:

Np(V,E,w) is the contact network of p if V.= { p1,p2,....,pm} is the set of
nodes, £ = { { pi,v;} | foip, > 0} s the set of edges with f,, . the con-
tact frequencies between the nodes (bins) with 1 < i < m, and w the weighting
function, i.e. an application which sends £ in R™ as

w:&— R (3)

more in detail, the weighting function w assigns to each edge its contact fre-
quencies as

w(piapj) = fpupj' (4)

Remark 1:

It is here anticipated that the weighting functions will be generalized.
Definition 9:

The cis contact-map matrix A(czs p) is the adjacency matriz of the contact
network Ny(V, E,w).

The notions of weighted graphs and those of unweighted graphs can therefore
be recalled.

Definition 10:

NV, E,w) is named an unweighted graphs if the weight w is such that w —
E—={1}.

Definition 11:

NV, E,w) is a weighted graph otherwise.

Let { C} be the set of clusters in Np(V, &, w); the following definition holds
Definition 12:

The set of clusters { C} is defined as

{C} ={a} 2 ()

with ¢ C V, k > 1. R
The Shavit-Walker-Lio’ (SWL) matrices B’s are defined as

e B(1) an m x m matrix whose entries b(1);; are as

b(1);j =1,4,j €c,ce C,cCV, (6a)
b(1);; =0 otherwise; (6b)

and

e B(s) an m x m matrix whose entries b(s);; are as

b(s)ij =1,i,j €c,c€ Co_1,cCV, (7a)
b(s)ij =0 otherwise; (7h)
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If the structure is hierarchical, the presence of clusters can be hypothesized. For
this reason, the Hierarchical Block Matrices (HBM’s) are looked for.

The HBM matrices of N can be here studied.

Definition 13:

The HBM block matriz of N3(V,E,w) is a non-negative m x m matriz G whose
entries g;; are defined as

gij = ming{ s | bs ij = 1} (8)
with s > 1.

2.2 Singular-value decomposition of ordered block matri-
ces: theorems

From [16], the underlying ’signal’ matrix with ordered block structure D is

considered, i.e. D € R™*"™ that is starting index of J as m1 X n to my; X n.

A rectangular ’observation’ matrix Y is considered, under the hypothesis that

there are M blocks of sizes (mq,ma, ..., mr) with sumz {V[ml- = m and N blocks
. . j=N

of sizes (n1,m2,....,nn) with 77 nj =n.

Without loss of generality, m < n is assumed.

The observation matrix Y can be decomposed according to the entries

Yij = du@yv ) T a6 +rvi) (9)
where H(i) and V(j) are block membership indicators with values (1, ..., M)
and (1,...,N).
The column vectors 7y ;) and v,(;) are defined as continuous random variables
with vanishing means and standard deviation o, and o,, respectively, i.e. they
represent whites noises.
The underlying constant signal D is therefore isolated from the other compo-
nents in Eq. (9).
Let jaxb be an a x b matrix with all entries equal to 1.
The matrices D, ) and ¥ in Eq. (9) are written as

dllJleTLl e leJmlan

dMIJmMan dnlmeMXnN
= {mi}
771Jm1 Xn

WMJmM Xn
v ={vi;}

v1dn x M

>
|

VMJm]\/jXTL
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3 Results

3.1 New Definition of the chain from the contact map in
the presence of random effects and white noises

The request of [23] that the distances between the contact maps be Euclidean
are here accomplished.
The Matrix Y from [15] is here rewritten according to th singular-values decom-
positions as

Y =oYyoT (10)
The matrix © and the matrix 0 are reduced to vectors: the vector « is recovered
in the general case; differently, in the present analysis,if Y is compact, the
metric is Euclidean when that of the vector ¥ is Hilbert (while the definition of
@ is not in general Hilbert).
This way, the chain Q is defined as one on a surface with a Hilbert metric. The
chain of the adjacency matrix is the topological Markov chain.
The Euclidean distance from [14] is used to define the average pairwise distance’.
From [18], the Cameron-Martin metricis defined from yas

| v |= supvTy - vTev < 1 (11)

on the vector ¢ of the singular-value decomposition Eq. (10); the vectors ¥
and the vector ¥ are made to coincide is the case of fragment sequencing is
studied. The role of ¢ is that of the variance, form which the covariance is
taken, which allows one to specify marginal distributions; the choice of ¢ is
specified in Theorem 2.

on the vector ¥ of the singular-value decomposition Eq. (10); the vectors
and the vector ¥ are made to coincide is the case of fragment sequencing is
studied. The role of ¢ is that of the variance, form which the covariance is
taken, which allows one to specify marginal distributions; the choice of ¢ is
specified in Theorem 2.

The hypothesis from [18] on the expectation value and on the variance are kept

as

<l

E(v) = 0, (12)

and
Varv = v ¢v. (13)

3.2 Clusters as Hidden Markov Models

Asin [18], the obtained clusters are Hidden Markov Models of ‘multivariate
Gaussian data’ when the covariance matrix is fixed.

It is the purpose of the next Section to fix the covariance .

The mean vectorisnewly estimated from the log-emission function from [18]

in terms of the Baum-Welch backwards probabilities and for the Baum-Welch
forward ones and requested to be vanishing in the form of [15].

In the Baum-Welch algorithm, the likeli-hood function L is here written from
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[25] on the A collection of model parameters. The Baum-Welch backward proba-
bilities a(t) and the Baum-Welch forward probabilities 3(t) are here considered
for the observation of the probability space O as

a(j) = Pr(01,02,...,04,5: = j | A), (14a)
Bt(]) = PT(Ot+1, ...,Ot,St :j | A) (14b)

The multivariate distribution mean is calculated as

i Zim (DGO

j = (15)
Z§:1T a:(5)Be(5)
and is here newly requested to vanish as
m; = 0. (16)

The techniques for making the multivariate distribution mean vanish analyti-
cally are discussed in Subsection 4.1; in the following Subsection, the paradigm
here developped is proven to be one generating a Markov Process.

The covariance matrix isnow fixed from [20], and the Topological Hidden
Markov Models are newly built.

3.3 The new Topological Hidden Markov Models (of clus-
ters)

Asstudied from [20], a Gaussian distribution with vanishing mean is taken.

The specification of the variance ¢ allows one to specify the marginal distribu-
tions.

Gaussian probability measure with 'prescribed marginals’ are defined after the
joint probability density P with marginals P.,, Pe,, ..., Pc,- The ¢; here used are
those from the subset Eq. (5).

A class of Gaussian measures with prescribed margin is newly found after [20]

as there exists the covariance matrix ¢ and ¢ is unique.

The probability space (states,observation, filter) is now constructed for the
Topological Hidden Markov Models of clusters.

The filter is constructed as from the probability function after which the mea-
sure of the probability space is defined.

From [20] p. 139, therandom vector field X is considered, with Gaussian distri-
bution and with vanishing mean and positive-definite covariance ¢. The density
p(X) is written as

p(X) = (2m) 71OV (det[]) /23X TX (17)

from which the measure of the probability space is calculated.

Marginal densities pp()z ) are defined fro arbitrary subsets [ of X. The following
Proposition is drawn from Proposition 1 from [20].

Proposition 1:
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The zero’s of the matriz ¢ correspond to the definition of conditional indepen-
dence.

The following new proposition is newly derived after Proposition 2 from ibidem
as

Proposition 2:

Let C be the simple graph of vertices { cl} from Eq. (5). The vertices of ¢
index the Gaussian random variables X .

The particular cases of the pairwise sequence is now studied for comparison with
[18].

The covariance obeys the following

Definition 14:

¢Ha, B) = 0 implies that the pairwise sequence (a, 3) are not in E(C), and
a # 3.

The generalized covariance here used is {(«, 3). The generalized covariance
matrix ¢ is defined as

$(a, B) = E(XaXp) (18)

The following two theorems are recalled in [20] from [26].
Theorem 1: R
The covariance Kgem (e, B) is determined as

Koem(o, ) =&(o, B),{ o, B} €&(C), ora=p (19)

where Ko 1S the sample covariance matrix.
Theorem 2:
the choice is taken

S, B)=1,{a,B} ¢E(C),a#p, (20)

being hatl the identity matriz.
The sheaf-cohomology techniques from [17] can beused to modelize the scenario
with noises and the random effects as well.

3.4 Topological framework of contact probabilities

The role of contact probabilitie is inscribed within a topological framework.

In the work of Lieberman-Aiden et al. [27], massive parallelel sequencing is

made use of in order to demonstrate the 3-dimensional features of the complete
genome as far as proximity-based ligation is concerned. The opern choromatine
and the closed one are proven to be characterized after spatial segregation.
Ibidem, the long.range interactions between chosen pairs of locii is discrimi-
nated with Chromosome Conformation Capture (CCC), where the spatially-
constrained ligation plays a crucial role. Hi-C is a methodology which is based
on massive sequencing of unbiased identification, while CCC does not permit
unbiased genome-wide analysis.

In teh work of Kalhoret al. [28],the Tethered Conformation Capture (TCC)

is explained to be a technique of genome-wide mapping (after chromatin in-
teractions). Ibidem, the TCC is outlined to enhance the signal-to-noise ratio
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which highlights the inter-chromosomal interactions; diverse combinations of
interactions are hypothesized to be present in cells: 3-dimensional genome-wide
structures are highlighted. As one result, the statistical analysis is ibidem lim-
ited, according to which chromosomal interactions are investigated fro human
genome.

Ibidem, only a few structural aspects which rule the organization of chromatin
are nowadays reported to be understood at genome scales. Different circum-
stances limit the understanding of Chromosome Conformation Capture (CCC):
the low signal-to-noise ratios calculated in chromosome capture experiments
lower the capability to map low-frequency interactions; moreover, individual
structures are nowadays hypothesized to be verying in the cell population.
The conformation capture data into 3-dimensional structural models is now
therefore an open challenge. accordingly, theoretical folding models [27] have

bee utilized fr genome-wide conformation capture data.

From ibidem, the TCC is treated as a modified confirmation capture method, in
which a higher signal-to noise ratio is calculated, which allows for the analysis of
inter-chromosomal interactions; the resulting analysis technique is probabilistic,
and it enables one to describe some of the features of the genome. As a method-
ology, massive parallel sequencing is performed which relates the initial contacts
to the locations of the pairs of loci in the genome. The obtained contact maps
are demonstrated to accout for the observed patterns accurately: the results are
in accord with [27].

In the work of Misteli [29], acharacterization of the genome is depicted. Ibidem,

the organization of the genomic sequence is described as being determined after
spetial aspects and time ones at three diverse hierarchical scales, i.e., the func-
tioning of the nuclear properties, the higher-order mechanisms induced after
the chromosome fiber, and space disposition of the genomes within the nuclei
of the cell; the genome stability is understood to be influenced after these three
factors, which play a role also in the gene expression.

The three factors recapitulated in the above are pivotal in allowing fr the un-
derstanding of large-scale mapping of the DNA sequences; as a consequence,
the cellular mechanisms of genome position and the resulting action on genome
regulations are thus requested to be comprehendeed for the completion of the
sequencing. The nature of the transcription complexes is therefore effected as
highly-dynamical, i.e., where the dynamical characterization is dictated also af-
ter compartmentalization.

In the work of Brancoet al. [30], the compartimentalization processes are

analyzed as responsible for gene expression after the effect of chromatin inter-
actions between distal chromatin organization. More in detail, the interactions
between distal chromatin segments are reported as inducing the transcription
regulation. The topology of chromosomesisintroduced in [31], where the chro-
mosome topology is attribute also the capability to after the nuclear processes.
In the work of Haaf [32], the topology of chromosomes is exposed asundergoing
several rules which dictate the number of attachment sites of each chromo-
some. The arrangement of the repetition of DNA ’families’ is studied ibidem.
Th etopological structures demonstrate patterns also in evolutionary-distant

10
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species. On thier turn, the topological structures hepl define the porcesses of
transcription. The compartimentalization feature of the porcesses regulating
the transcriptions are not completely known yet.

In the work of Zhang et al. [33], the topology of chromosomes is axplained to

shape the energy landscapes which are in the present paper described within the
Markov Models, and which are now here newly analyzed as apt to be arranged
within the framework of Markov State Model.

In the work [33], the energy landscape are also found toexert abackreaction

on the 3-dimensional genome organization. The energy landscape is ibidem
depicted as frm a maximum-entorpy approach which leads to a least-biased ef-
fective energy landscape.

In the work of Boulos [34], graph theoryis applied in the description of hu-

man genome as far as chromatin interaction (HiC) is concerned. The main
replication regions are shown to be in correspondence od DNA loci of maxi-
mal network centrality; furthermore, these loci are demonstrated to constitute
a set of ’interconnected hubs’ both at the chromosome level and at the scales
implied for different chromosomes. The genomic mechanisms of replication and
of transcription can be framed within a grpah-theoretical organization, which
can be exploited to validate the polymer models of the nuclear organization.
The DNA sequences are ibidem described as networks, of which the critical po-
sitions are occupied accroding the choice of attribution of centrality hierarchies,
which distinguish amng the degree centrality, the betweenness centrality and
the eigenvector centrality. The ranking accounts fro the total weights of the in-
cident edges; within this analysis, the degree centrlaity [35] is alocal centrality
measure, the betweenness centrality [35] accounts for to which extent avertex is
located between other vertices on the geodesics of the graph (it is here recalled
that for these purposes the graph must be positioned on a manifold), , and the
eigenvector centrality [36] discriminated the vertices which are connected with’
well-connected’ vertices. Within this thoeretical framework, the 3-dimensional
conformations are studied: the genomic loci are described as vertices on a plane.
In the work of Sexton et al. [37], the contact mapis constructed tostart with

from the Drosophila species. More precisely, a high-resolution contact map is
written from a modified genome-wide chromosome conformation capture ap-
proach. The data analysis is presented as demonstrating the genome as exhibit-
ing a linear partition into 'well-demarcated’ domains which superpose with the
active epigenetic marks and with repressive ones in an extensive manner. The
intra-chromosome contacts and the inter-chromosome ones define the contact
density an the clusters.

In the work of Houet al. [38], the chromosome domains are proven to be defined
after epigenetic marks.

In the work of Dixon et al. [39], the 3- dimensional organization of human

genome is summarized. More in detail, megabase-sized local chromatin interac-
tion ("topological’) domains are found; moreover, the boundaries of the domains
are characterized as well. The topological domains are assigned a directionality
index which quantifies the degree and the type of ’interaction bias of genomic
region’; a Hidden Markv State Model is used to identify the ’biased states’

11
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in order to single out the locations of the topological domains: as a result,
the organization of the genomic DNA is described as one portioned into spa-
tial 'modules’ which are linked under the action of chromatine segments, after
which the 'topological boundary regions’ are those qualified after unroganization
of chromatin.

4 Discussion

4.1 The use of Dirichlet forms for obtaining a vanishing
multivariate distribution mean analytically

The useof Dirichlet forms isindicated in [16] and in [40].

The results from [16] are suited for construction of the Topological Markov

Models from Jukes-Cantor-inspired sequencing, i.e. asissued from [41].
Differently, theresults from [40] are suited for the analytical solution of Eq.

(15) and for the implementation of the potential theory for the calculation of
therewards (which isrecalled from [42] 2.2); the Cameron-Martin formula is
recalled in Section 4 ibidem.

As far as the calculation of the rewards is concerned, the presence of absorbing
states in a fragment can be newly discussed.

From [43] and from [44], the definition of vector fields for Dirichlet forms on
Markov processes leads to the analytical solution of Eq. (15); from [43], a

definition of vector fields on mapping spaces for this purpose can be achieved.
The role of weights can be generalized fromachine-learning purposes asin [45].

4.2 Generalized constructions of the chain of fragment
comparison

The method of fragment comparison is here described from [46].

From [46], the method is developped, in which aparticular probability kernel is
constructed with the suitable space of probability measures for the definition of
the chain; the work [46] is to beimplemented with the choice of thelikeli-hood
function asfrom [25] implementation of Eq. (15). The results here presented are
compatible with the most general construction [46] when Gaussian distribution
with vanishing mean is taken for the definition of the measure, i.e. the filter, of
the probability space.

The comparison of the two fragments (™) and (y™) is here accomplished on a
chosen probability space (€2, F, Pr) with Pr assumed on normed spaces Ey and
E, respectively.

Let A and B be fixed Borel subsets of of Ey and E, respectively.

X™ is the state space o{ xo,21,...,2,} defined on a Borel subset with its o-
algebra.

Analogously, Y™ is o{ vo0,y1,..+Yn} . The Hidden Markov Process (z") is
characterized after a transition kernel T (z,dxz’), and the observation process

12
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(y") is characterized after a transition kernel T2 (y, dy’) as

T{ Tnt+1 € A | Xann} = T(iﬂn,A), (21&)
T{Yyn+1 € B| X", Y"} =T"" (yn, B), (21b)

respectively.
The kernels 7 are probability measures for the fixed Borel subsets A and B; 71
is chosen as

ﬂf=44f%ymuw (22)

with @ € R(E), with R(E) being the suitable space of probability measures.
Remark 2:

The case of undirected graphs is here newly remarked to be compatible with
denumerable observations: E is covered for w(y,x’,-) univoquely.

The Markov Process is one with

Hmwaééﬂmwﬁmwwmmw (23)

with f in the ’space of Borel measurable functions’ on Ey x E.

The evolution of the system is described after Eq. (6) from [46]. It ishere

remarked that the application of the methods from a Gaussian Markov distri-
bution hold, i.e. the transition kernels are able to induce a measure for the filter
(of the probability space).

The Cameron-Martinspace isnewly presented in [47]. The Ornstein-Uhlenbeck
semigroup mapping is reappraised in [19] toimplement the Ornstein-Uhlenbeck
process described in [18]. An example of representation for the Kantorovich-Rubinstein
distance on a centered Gaussian measure on the Borel o-field is provided with in
[19] for writing the distances between the sequences; the example issuited both

for the pairwise sequencing and for the fragment sequencing. Ibidem, examples
are provided with for which the total variation of the norm is proven to be apt
to be minorized, and the existence of a mapping operator, in Lemma 2.1 ibidem,
of norm lisrecalled from [48]: thelemmaisrecalled as

Lemma 1:

The mapping

v(a) = D/OOO Tiadt, o€ L*(X,u) (24)

is defined with v : L*(X,p) — L*(X, u, H) .

Lemma 1 allows one to define the probability space of the hierarchical block
matrices Markov shift.

Differently, the ’SVD decomposition of experimental data matrices for complex
non- Gaussian random variables’ is presented in [21]; the techniques derived int

he present subsection apply as well; indeed, the derivation here brought from
[46] isindependent of the Gaussian features of the variables: adifferent chain

can therefore be derived.
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4.3 Applications in sequencing

The example of [18] cannow beapplied the paradigms developped in the present
paper of the aim of unveiling the structures of the Hidden Topological Markov
Models; more in detail, it is here demonstrated that the knowledge of the metric
allows one to define the differential operators to be applied to the matrices in
order tosubstitute theentries [17] where needed: indeed, therole of the metric

is one to define the manifolds on which the graphs lives, from which graphs it is
possible to select the ’edges’ whose union determines the paths (which describe
the processes).

The interrogation of [1] formulates the inquiry about how hierarchical block
matrices can encode the items of information about the topology of block-wise
segmentation as far as the description of the topology of neighbouring regions is
concerned (i.e., but not only, from the investigation requested fro accomplishing
the tasksproposedin [22].).

It is here explained how to put the data on a topological manifold, whose metric
is spelled out. In the present case, a Hilbert metric will be determined, which
defines the probability space of the process. Indeed, from the clarifications
expressed in [26], the one-dimensional segmentations are scrutinized, after the
which the numerical method is implemented, according to which the likelihood
with respect to the block boundaries is maximized- it is here further noticed
that the likelihood can be maximized also analytically.

The use of a Cameron-Martin distance allows one to extract Markov-properties
models from the host of 'Brownian-motion-like’ schemes to which the segmen-
tation technique(s) might correspond.

From [49], the problem is upgraded to alocally compact, connected, separable
Hausdorff space with aRadon measure on it; from [16], it is possible to write

the time evolution of the eigenvalues of the pertinent Markov-properties models
from the kernels, on which s radon measure is put: the Dirichlet form implies
the Bochner formula.

The use of the Hilbert space which forms an L? structureisprovenin [17]; the
employment of this space is proven to be needed straightforward in the case one
takes into account the prescriptions from [50].

The Markov-properties models here studied are those which define the block
decomposition of the topological shift.

Tt ishere remarked that the numerical model proposed in [50] is this way solved
analytically.

4.4 Applications in Machine learning

In thework of Khanet al.[51],the methods of blockchain are addressed. The

Implmentation of protocols of data availability optimization are envisaged
within the framework of blockchain. The roles of blockchain and that of
machine learning are compared;

the useof hyperledger technology is analyzed: as aresult, the combination of
machine learning and of blockchain distributed ledger technology is studied.
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In theowork of Kahnet al. [52], the application of blockchain-based platforms

is implemented: as a result, the challenges of data fluctuations are addressed.
Ibidem, the use of blockchain to minimize resource consumption and the use of
resources is envisaged.

In thework of Khanet al. [53], the degree of convergence of artificial-intelligence-
enabled machine-learning techniques is analyzed, such as artificial neural net-
works, support vector machines, reinforcement learning and deep-learning hier-
archy; the utilization of adoptive control, that of convolutional neural networks
and that of recurrent neural networks in data processing are juxtaposed: the
combination of artificial intelligence with blockchain technology is postulated.
Ibidem, the employment of artificial neural networks for assessing optimization
parameters is posited.

In the work of Khan et al [54], the challenge of data retention is afforded; the

contrl systems are inspected: the possibility to reshape data analysis in the ad-
vent of fog computing is considered.

In thework of Khanet al. [55], theissue of autonomous decision making within

the framework of machine learning is researched. The target of this study is to
put forward the balance of the axploitation of the artificial neural network with
Particle Swam Optimization-enabled metaheuristic optimization methods; the
hierarchy of automation is comprehended after the artificial-intelligence system:
thespecific area of interest is to peruse the cloud-native building blocks [56].
Ibidem, the control plane functions are probed as decoupled from user planes.
In the work of Khan [57], the combination of gamification an genral aware-

ness training is theorized; generative artificial intelligence with gamification are
proven to replace the traditional hierarchies: generative artificial intelligence and
gamification-based learning and training are explained to define a new measure
of the learners’ learning scale in order to reard the gaming-based learning.

In thework of Khanet al. [58], the focusislensed tothe proposal of amid-

dleware lightweight proof of elapsed time in blockchains; the concept of 'per-
missioned chain’ is elucidated as a better single-entity control operation: the
principal aspects of blockchain technology which ensure efficiency afte rmeans
of a propser lighweight topology are recapitulated. Ibidem, the use of multi-
threading in modifying the system scalability as increased is provided.

In thework of Khanet al. [59], the technology of Deepfake isinvestigated; a
criticism of the asssessment measures made use of to detect model performance
is delivered: the features of computing efftiveness and efficiency are delineated.
Ibidem, the exploiting of cross-model ledger technology for cross-model deep-
fake evaluation within forms of resislient systems are envisaged as to be further
investigated.

In thework of Khanet al. [60], blockchains and edge computing are theoretized

to be authenticated after a scalable lightweight authentication system after the
use of Hyperledger Indy; time latency is lowered after edge computing: the uti-
lization of a hybrid cryptographic technique allows for integration. Ibidem, the
permissioned blockchainallows for the obtention of compliance.
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5 Prospective studies

As an example, in the case of phylogenetic analysis, the likelihood function is
specifiedin [61].

In the present case, the choice of [25] ensure the newly established paradigm

to be apt for machine learning for implementing the Deep Markov Model for
fragment sequencing after construction from pairwise sequencing as indicated in
[17] with the application of the Morse operators. The technique toinsert gaps
between theresidues from[5] and from [24] cannewly be further implemented.

The useof cis maps and trans maps was further developped in [62].

The use of pairwise sequencing [63] can beapplied the notion of distances as

well [64].

As comparison with [6], [7], [5], the method for sequencing developped in [65] is

of linear growth in the length of the sequence.

A comparison with [21] allows one toinquire about the hypotheses from [20].

6 Conclusions

The Hierarchical Block Matrices (HBM) techniques are here used for discussing
the well-posed-ness of the comparison of different contact maps with different
bin sizes.
A comprehensive description of clustering states as expression of latent states in
applications of machinelearningis provided with asfollows [66]: thelatent states are
proven to be codified in clusterings, which can be expressed as Hidden Markov
Models. Moreover, the derivation of the application (i.e. to biological samples
of tissues) demonstrates that the experimental error threshold is overcome.
The presented model is therefore apt for implementing Deep Markov Models for
Machine learning.
The methodology here newly utilised is the application of Dirichlet forms to
recover a vanishing multivariate-distribution mean in an analytical manner.
The paradigm for the construction of the models (i.e. independently of the
measure for the comparison with

the stochastic properties of the SVD decomposition at the approximation
requested after the experimental Data to be consistent).
Moreover, the role of the overlapping of the contact maps is outlined as one
admitting the comparison of graphs and of all the related graph structures (i.e.,
such as distances).
Within the same model, noise and random effects are expressed within the same
paradigm.
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