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Abstract

Background: Oxidative stress plays a crucial role in various aspects of cancer and other diseases. While reactive oxygen species
(ROS) serve as key signal molecules in physiological processes for the normal functioning of the female reproductive system,
they have also been implicated in pathological processes such as polycystic ovary syndrome (PCOS). Some studies have reported
a significantly higher risk of endometrial cancer in women with PCOS. However, the association of PCOS and common female
cancers, such as breast and ovarian cancer, has not been thoroughly studied. Objective: The present study was undertaken to
identify the hub genes and molecular pathways that are common amongst polycystic ovary syndrome, breast cancer, and ovarian
cancers using bioinformatics based on the interactomes of these diseases. Methodology: Common differentially expressed genes
(DEGs) of PCOS, breast, and ovarian cancer were retrieved from GEO to analyze datasets using R-software. An interactome of the
common DEGs and their interacting partners was built in the STRING database, followed by analysis using different Cytoscape
plugins to identify and validate the hub genes and their functional enrichment. Results: The identified hub proteins, namely
CYBA, CYBB, DUOXI, NCFI1, NCF2, NCF4, NOX1, NOX3, NOXAl, and NOXO1, are components or regulators of the NADPH
oxidase, which catalyzes the production of ROS that could promote carcinogenesis and metastasis in patients suffering from PCOS.
Conclusions: NOX-derived ROS are essential for normal cellular functions and host defense against pathogens. However, excessive
ROS production can lead to oxidative stress, contributing to various diseases, including PCOS and cancers. Therefore, regulating
NADPH oxidase activity could potentially serve as a therapeutic approach for PCOS management and prevent the initiation and
progression of cancers in females suffering from PCOS.
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lI. Introduction tal at high concentrations, leading to structural damage of

nucleic acids, proteins, and lipids, thereby contributing to
Oxidative stress [OS] occurs when the level of reactive  the pathogenesis of various diseases such as cardiovascu-
oxygen species (ROS) exceeds the antioxidant capacity of  |ar, neurodegenerative, and cancer [3].

the cell, resulting in damage to the cell and its components. Oxidative stress can affect various aspects of can-
ROS have a dual role in cellular function. At low concen- cer, from initiation to treatment resistance, and is asso-
trations, they act as signaling molecules involved in sur-  ¢jated with both exogenous and endogenous factors [4].
vival pathways essential for physiological functions and ROS have been found to have a dual role, as it can induce
redox biology [1,2]. On the other hand, ROS are detrimen-  genescence and apoptosis in cancer cells, thereby exhibit-
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ing antitumorigenic effects [5,6]. On the other hand, it
can promote tumor growth by stimulating cell prolifer-
ation and angiogenesis, increasing DNA mutation rates,
inducing genome instability, and modulating gene expres-
sion [7]. Prolonged exposure to high amounts of ROS
can lead to the accumulation of DNA mutations due to the
inhibition of DNA repair mechanisms, resulting in can-
cers [8]. ROS play a crucial role in the development and
progression of breast and ovarian cancer. At moderate lev-
els, they promote cancer cell survival by activating growth
factors and signaling pathways [9,10]. NADPH oxidase
enzymes play a significant role in breast cancer progres-
sion, with NOX1, NOX2, and NOX4 showing higher ex-
pression in breast cancer and DUOXI1 levels being lower
across all subtypes [11]. NOXI is also highly expressed
in ovarian tumors and is regulated by mitochondrial func-
tion, indicating a cross-talk between mitochondria and
NOX signaling [12]. NOX4 has been reported to be
over-expressed in ovarian tumors, contributing to tumori-
genesis by promoting cellular senescence and apoptosis
resistance [13,14]. Elevated levels of malondialdehyde
(MDA) and reactive carbonyl proteins, both indicators of
oxidative stress, have been observed in ovarian cancer pa-
tients, while levels of glutathione peroxidase 3 (GPX3)
were found to be decreased [15].

As a secondary messenger, ROS can assist in tumor
progression through the proliferation and survival of tu-
mor cells by facilitating pro-tumorigenic signaling in the
tumor microenvironment, thereby playing a crucial role in
cancer invasion and metastasis [16]. A crosstalk between
malignant and non-malignant cells results in this highly
complex, multistep process leading to cancer metasta-
sis [17,18].

Reactive oxygen species play a dual role in female
reproduction, with both physiological and pathological ef-
fects, and the female reproductive tract contains multiple
sources of ROS, such as Graafian follicles, follicular fluid,
and the endometrium. At controlled levels, ROS are es-
sential for various reproductive processes, including fol-
licular development, ovulation, corpus luteum function,
and embryo implantation. However, when ROS produc-
tion exceeds antioxidant defenses, oxidative stress occurs,
potentially damaging cells and tissues in the genital tract.
This imbalance can negatively impact ovarian function
and contribute to female infertility [19-21].

Recently, OS has been reported to play a significant
role in the pathophysiology of polycystic ovary syndrome
(PCOS) [22]. PCOS is a common endocrine disorder af-
fecting up to 15-20% of reproductive-aged women, char-
acterized by hyperandrogenism, oligo-anovulation, and
polycystic ovaries [23]. Women with PCOS exhibit in-
creased NADPH oxidase activity, a key enzyme in ROS

production, which is associated with insulin resistance,
abdominal adiposity, and hyperandrogenism [24]. El-
evated ROS levels negatively impact ovarian follicles,
oocyte quality, and fertility, resulting from mitochon-
drial dysfunction and impaired oxidative phosphorylation.
This contributes to metabolic and hormonal dysregula-
tion, as hyperandrogenism and insulin resistance create a
feedback loop that further exacerbates oxidative stress in
PCOS [25].

Multiple studies in women with PCOS have consis-
tently found a significantly higher risk of endometrial can-
cer, which has been attributed to chronic anovulation lead-
ing to estrogen-driven endometrial hyperplasia [26,27].
OS plays a crucial role in breast cancer (BC) and ovar-
ian cancer (OC) pathogenesis, contributing to its devel-
opment, progression, and metastasis [6,10,28]. However,
the relationship between PCOS and ovarian or breast can-
cer remains unclear. While some studies have found
no significant association, others have suggested a po-
tential link, highlighting the need for further investiga-
tion [27,29-32]. In view of the inconsistency in findings,
the present study was undertaken to identify the molecular
factors and pathways common amongst polycystic ovary
syndrome and breast and ovarian cancer so as to discern
their shared molecular signatures using an interactome-
based bioinformatics approach.

2. Materials and Methods

2.1. Research Methodology

The schematic workflow summarizing the bioinformatics
pipeline is given in Figure 1.

2.2. Data Retrieval

Datasets for the control and disease conditions of poly-
cystic ovary syndrome (PCOS), breast (BC) and ovarian
cancer (OC) having identifiers GSE84958, GSE42568,
and GSE18520 [33-35], respectively, were retrieved from
the NCBI Gene Expression Omnibus (GEO) database us-
ing the GEO query package of the R programming lan-
guage [36].

2.3. Pre-Processing of Microarray Data
and DEG ldentification

The three GEO datasets were preprocessed through mul-
tiple steps, including data consolidation and normaliza-
tion using log2 transformation, with further analysis per-
formed using the gprofiler2 package in R Studio [37].
Volcano plots for all three datasets were constructed and
visualized using the ggplot2 package [38]. To identify
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Figure I: Graphical flowchart of the research methodology.

differential gene expression between disease and control
states, up-regulated and down-regulated genes were ob-
tained with p-value < 0.05 and logFC > 1, and p-value <
0.05 and logFC < —1, respectively, utilizing the limma
package of R [39]. The overlaps and intersections among
the three datasets of differentially expressed genes (DEGs)
obtained for PCOS, BC, and OC were identified using
Venny, an online tool that generates Venn diagrams
[40].

2.4. PPI Network Construction, Analysis,
and Gene Enrichment

Interactome to visualize the protein-protein interactions
(PPI) was constructed using STRING (Search Tool for
the Retrieval of Interacting Genes/Proteins) [41] and an-
alyzed using Cytoscape [42]. Topological analysis and
identification of functional modules of the networks was
performed using the Cytoscape plug-in Cytocluster [43],
MCODE [44], and NetworkAnalyst [45], along with Cyto-
Hubba to identify essential nodes/hubs using graph theory
algorithms [46]. ClueGO, a Cytoscape plug-in, was used
for pathway enrichment to identify the functional annota-
tions [47].

3. Results

3.1. Data Retrieval and ldentification of
DEGs

The datasets for PCOS, BC, and OC with series iden-
tifiers GSE84958, GSE42568, and GSE18520, respec-
tively, were pre-processed to identify the DEGs by plot-
ting volcano plots (Figure 2 and Table 1), followed by
cross-comparison analysis that identified 35 common
DEGs amongst PCOS, BC, and OC (Figure 3).

3.2. PPI Construction, Analysis, and
Identification of Hub Genes

An interactome representing protein-protein interactions
of the 35 common DEGs shared amongst PCOS, BC, and
OC was constructed in the STRING database at a high
confidence value of 0.7 (indicates that the interaction be-
tween two proteins is more likely to be biologically rele-
vant or experimentally validated). The resulting network
comprised 195 nodes (representing genes) and 738 edges
(representing interactions between nodes) (Figure 4).

For identifying functional modules and predicting
protein complexes in biological networks obtained from
STRING, Cytoscape and its plugins MCODE and Cyto-
Cluster (ClusterONE algorithm) were used. On analysis
of the interactome with MCODE, twelve clusters were
obtained with five significant clusters based on the num-
ber of nodes and edges (Figure 5 and Table 2). Mean-
while, ClusterONE yielded twenty-four clusters, nine of
which were significant, with a p-value < 0.05 (Table 3).
The merged network of significant clusters of ClusterONE
and MCODE was analyzed using the Cytoscape plugin
CytoHubba, employing the Maximum Clique Centrality
method (MCC). This analysis identified the top 10 hub
genes, i.e., CYBA, CYBB, DUOXI, NCF1, NCF2, NCF4,
NOXI, NOX3, NOXA1, and NOXO1 (Figure 6). The hub
genes/nodes represent highly connected nodes having a
higher likelihood to be involved in an essential interac-
tion [48]. The hub genes were validated by analyzing
the merged network of significant clusters of MCODE us-
ing the Cytoscape plugin NetworkAnalyzer, which com-
putes and visualizes various directed and undirected net-
work parameters [45]. The same hub genes were identi-
fied, and they were also found to be closely associated in
the protein-protein interaction (PPI) network constructed
and visualized using STRING (Table 4).
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Table I: Differentially Expressed Genes (DEGs) identified.

Disease PCOS Breast Cancer (BC) Ovarian Cancer (OC)
No. of up-regulated genes 185 1909 3295
No. of down-regulated genes 205 2148 1988
Table 2: Clusters selected from analysis of STRING network using Cytoscape plugin MCODE.
Clusters Nodes Edges Score Clusters Nodes Edges Score
. AN
wlm . i )
P 30 151 10.4 AN L 12 50 9.1
. TR,
-st c®
- e =
9 34 8.5 o 16 41 55
]
L i
; o
.ﬁ. ! e 8 16 4.571
=
L}
Table 3: Clusters selected from analysis of STRING network using Cytoscape plugin CytoCluster.
Cluster Details Cluster Details

Nodes: 25
Density: 0.550
Quality 0.846
P-value: 1.816E-9

Nodes: 28
Density: 0.447
Quality 0.790
P-value: 2.220E-9

Nodes: 14
Density: 0.648
Quality 0.937
P-value: 1.817E-6

Nodes: 11
Density: 0.709
Quality 0.951
P-value: 1.963E-5

Nodes: 11
Density: 0.509
Quality 0.800
P-value: 9.390E-5

Nodes: 8
Density: 0.571
Quality 1.000
P-value: 1.787E-4

Nodes: 18
Density: 0.725
Quality 0.847
P-value: 1.866E-7

Nodes: 9
Density: 0.500
Quality 0.857
P-value: 3.036E-4

Nodes: 10

Density: 0.533
Quality 0.667
P-value: 0.002
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Figure 2: Volcano plots of datasets (A) GSE42568 (Breast cancer) (B) GSE18520 (Ovarian cancer) and (C) GSE84958 (PCOS)
showing distribution of DEGs. Red colour indicates up-regulated genes, blue colour denotes down-regulated genes while grey colour

represents non-significant genes.

3.3. Gene Set Enrichment Analysis

All the gene products of the identified hub genes CYBA,
CYBB, DUOXI, NCFIl, NCF2, NCF4, NOXI, NOX3,
NOXA1, and NOXOI were enriched in reactive oxygen
species metabolic processes, i.e., superoxide-generating
NADPH oxidase activator activity (GO:0016176) and re-
active  oxygen species Dbiosynthetic  processes
(GO:1903409), on analysis with Cytoscape plug-in Clue
GO (Figure 7).

4. Discussion

The CYBA gene encodes the alpha subunit of cytochrome
b-245 (also known as P22phox), while the CYBB/NOX2
gene provides instructions for producing the cytochrome
b-245 protein. Beta chain (also known as p91phox), NCF/
(Neutrophil cytoplasmic factor 1/p47phox), NCF2 (Neu-
trophil cytoplasmic factor 2/pp67phox), and NCF4 (Neu-
trophil cytoplasmic factor 4 also known as p40phox) are
components of NADPH oxidase required for its func-
tion [49]. p91phox (NOX2) is the catalytic subunit of the
superoxide-generating respiratory burst NADPH oxidase,
which is regulated by subunits p47phox and p67phox. A

homolog of gp91phox, NOX1, is regulated by NOXO1,
an organizer protein that cooperates with an activator pro-
tein, NOXAI, to regulate the catalytic subunit, both of
which are homologs of p47phox and p67phox, respec-
tively. DUOX1 (Dual oxidase 1) is also a member of the
NADPH oxidase family that catalyzes the production of
hydrogen peroxide and plays a crucial role in innate host
defense and thyroid hormone biosynthesis [S0]. In mam-
mals, all NOX proteins produce ROS, with DUOX1-2
and NOX4 generating hydrogen peroxide, while others
produce superoxide [51].

Studies have identified potential biomarkers and hub
genes for breast and ovarian cancers through bioinformat-
ics analyses. Common hub genes identified across stud-
ies include CCNE1, CCNB2, VEGFA, and PTEN, and the
DEGs were found to be involved in critical pathways such
as cell cycle, p53 signaling, and drug metabolism [32,52—
54]. Several hub genes have been identified as poten-
tial therapeutic targets or prognostic markers, such as
FN1, IL6, FOS, CCNG1, ADAMTSI1, RPS9, RPLI11,
RPS14, and RPL10A. Key pathways involved in breast
cancer development include cell adhesion, immune re-
sponse, cell cycle, cell migration, proliferation, and p53
signaling [32,54-56]. FOS, CDKN1A, CD44, BCL2, and
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Figure 3: Identification of 35 common DEGs between PCOS (purple), BC (yellow) and OC (green) by using Venn diagram.

MMP3 have been implicated as being potentially impor-
tant in ovarian cancer progression. Functional enrichment
analysis revealed their involvement of these genes in pro-
cesses such as collagen catabolism and stress-activated
protein kinase cascades [57-59]. Notably, BUB1B and
KIF20A were found to correlate with ovarian cancer prog-
nosis and clinical characteristics [60].

Similarly, bioinformatics analyses have revealed
key pathways and genes involved in PCOS development,
including those related to interferon signaling, platelet
activation, and lipid metabolism. Additionally, epige-
netic alterations, such as DNA hypomethylation of genes
involved in lipid and steroid synthesis, may contribute
to hyperandrogenism in PCOS [61]. Key genes iden-
tified across studies include AR and STK11, which are
involved in the AMPK and adipocytokine signaling path-
ways [62]. In another study, the identified DEGs were
mainly involved in actin cytoskeleton organization, pos-
itive regulation of the NF-«kB signaling pathway, and
positive regulation of the canonical Wnt signaling path-
way, along with the PI3K/Akt signaling pathway and gly-
cosaminoglycan biosynthesis [33]. Recent studies have
highlighted the role of increased oxidative stress, charac-

terized by elevated ROS and reduced antioxidant activ-
ity in PCOS [32,63]. Polymorphism of cytokine genes,
including IL1A, IL1B, ILIRN, 3and IL6, as well as ge-
netic variations in NADPH oxidase components, have
been linked to PCOS susceptibility [64—66]. Inhibition
of NOX4 has been shown to reduce oxidative stress and
cell apoptosis in PCOS rat models [32]. Additionally,
inflammation-related genes have been reported to be dif-
ferentially expressed in ovarian stroma and granulosa cells
of PCOS women, suggesting alterations in the local ovar-
ian immune system [67]. The imbalance in ROS distribu-
tion may contribute to reproductive dysfunction in PCOS,
affecting follicular development, oocyte maturation, and
ovulation [68].

This is the first study that reports a direct link be-
tween oxidative stress and PCOS, BC, and OC since all the
identified common genes are components or regulators of
the NADPH oxidase. NOX4, localized to mitochondria,
plays a significant role in breast and ovarian cancer pro-
gression by generating ROS. It has been reported to con-
tribute to oncogenic processes and also hyperandrogenism
in PCOS [12,13,24]. Therefore, modulating NADPH oxi-
dase activity could potentially serve as a clinically signifi-
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Figure 4: Protein-Protein interactome generated using STRING with 195 nodes and 738 edges.

cant therapeutic approach to limit excessive inflammation
in various diseases, as ROS and inflammation are closely
interconnected, each capable of inducing the other. This
could prevent the initiation and progression of breast and
ovarian cancers in PCOS patients, as oxidative stress ap-
pears to be a crucial factor in PCOS pathophysiology, in-
teracting with other etiological factors and environmen-

tal influences. Antioxidant supplementation and lifestyle
modifications that restore oxidative balance and improve
PCOS symptoms may further prevent the initiation, pro-
gression, and metastasis of cancers in females.

The limitation of this study, which utilizes an
interactome-based bioinformatics approach, is that although
the role of the NOX gene family has been reported in
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Figure 5: Merged network obtained after integrating five significant clusters obtained from Cytoscape plug-in MCODE.

multiple studies, the key pathways and hub genes iden-
tified in this study have not yet been validated through
wet lab experiments or clinical studies. Second, due to
the lack of a dataset of patients with combined conditions
of PCOS and BC or OC, the validation of the hub gene
was performed using in silico approaches and literature
mining. Therefore, the results need to be confirmed by
prospective clinical and wet lab studies.

5. Conclusions

In conclusion, this study explored the common hub genes
and the possible biological mechanisms for the co-occurrence
trend of PCOS, BC, and OC. The clevated oxidative stress
in PCOS patients may increase their risk of developing
cancer, especially breast and ovarian cancers, as free rad-
icals promote carcinogenesis and metastasis. These
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Table 4: Top 10 ranked hub genes based on degree obtained from analysis of MCODE clusters merged network using Cytoscape
plug-in NetworkAnalyst and their interacting network in STRING.

Gene
NCF1 NOXI
NCF2 NOX3
NCF4 NOXAI
CYBA NOXOI
CYBB DUOXI

N
)=
NS

Figure 6: Top 10 ranked hub genes network obtained from analysis using Cytoscape plug-in CytoHubba, of network obtained from
(A) MCODE and (B) ClusteONE.

superoxide-generating
NADPH oxidase

activator bvd h
activity ' /9"09¢n s
peroxide species
biosynthetic biosynthetic

process process

Figure 7: Pathway enrichment incorporating KEGG and Biological pathways using Cytoscape plug-in ClueGO.
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findings highlight the complex interplay between the
NOX gene family and ROS in PCOS, breast, and ovarian
cancer and their potential as therapeutic targets, particu-
larly for PCOS management.

Abbreviations

ROS Reactive Oxygen Species

PCOS Polycystic Ovary Syndrome

DEGs Differentially Expressed Genes

(0N Oxidative Stress

MDA Malondialdehyde

GPX3 Glutathione Peroxidase 3

oC Ovarian Cancer

BC Breast Cancer

PPI Protein-Protein Interactions

MCC Maximum Clique Centrality Method
NCF1 Neutrophil Cytoplasmic Factor 1/p47phox
DUOX1 Dual Oxidase 1
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