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Abstract

Uveal melanoma (UM) is a malignant eye cancer that has a high mortality rate and is notoriously difficult to diagnose clinically.
Identifying prognostic biomarkers and evaluating the tumor immune microenvironment for UM in order to improve diagnosis,
treatment decisions and even overall survival for patients. The study involved a comprehensive analysis of transcriptome profiling
from the TCGA-UVM project, with the aim of identifying biomarkers and exploring the relationship between the tumor immune
microenvironment and UM. A total of 32 differentially expressed genes and 25 RNAs associated with the overall survival (OS)
of UM patients were identified. The fusion gene HSPEI-MOB4 was found to have the highest risk ratio, indicating it plays a key
role in the survival rate of these individuals. Through similarity analysis of RNAs expression levels in UM, two subtypes were
identified, and the survival rate for Type 1 was notably greater compared to Type 2. Using LASSO regression, a risk model was
developed to identify five genes as potential biomarkers for the diagnosis and prediction of overall survival (OS) in patients with
UM. Additionally, an association between the risk score and the fraction of immune cells in the Tumor Immune Microenvironment
(TIME) was proposed. The observations revealed a significant contrast in both immune score and clustering between high-risk and
low-risk groups. These findings offer new insights into approaches for immunotherapy and suggest potential therapeutic targets for
individual UM patients.
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I. Introduction

Uveal melanoma is the most widespread primary malig-
nancy to originate from eyes in adults, considered to be a
rare form of cancer, but it is notoriously aggressive and as-
sociated with a high rate of metastasis, making it difficult
to treat [1-3]. According to clinical data, the historical
one-year overall survival rate of 37% and a median overall
survival of 7-8 months, portray a bleak prognosis even in
the early stages, when the cancer has already metastasized
from the primary site [1]. This is mainly attributed to its
aggressive metastatic nature, with nearly 50% of patients

showing metastases to other organs such as the liver [2-5],
thus making treatments like radiation and surgery largely
ineffective [2—5]. Hence, it is of utmost importance to
pinpoint prognostic biomarkers for UM and devise treat-
ment strategies that offer greater efficacy for individuals
afflicted with UM.

The Tumor Immune Microenvironment (TIME) per-
tains to the immune environment that surrounds tumor
tissues. This microenvironment comprises a complex
network of diverse immune cells, such as lymphocytes,
monocytes, macrophages, and B cells, alongside the cy-
tokines they generate. The immune system is crucial
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in regulating the growth and progression of tumors and
holds a substantial impact on the eventual treatment out-
comes. Research has shown that by disrupting the tumor
microenvironment, the immune resistance of the tumor
can be effectively enhanced, thereby promoting tumor
therapy. Therefore, understanding and analyzing the tu-
mor immune microenvironment, as well as elucidating
the molecular and cellular mechanisms that regulate it,
has become the latest research focus. Despite this, our un-
derstanding of the influence that the TIME exerts on UM
remains limited.

Recent research efforts have been made to decipher
the molecular events in uveal melanoma, enabling new
clinical diagnostics and therapeutics to be established [5—

UCSC Xena browser (https:/xenabrowser.net/, accessed
on 5 March 2023).

Given the difference in the sources of data (TCGA
and GTEX), batch effects were a concern, as they could
obscure real biological differences between the tumor and
control samples. Therefore, the Fragments Per Kilobase
of exon per Million mapped fragments (FPKM) normal-
ization method was employed. FPKM corrects for dif-
ferences in sequencing depth and gene length, provid-
ing normalized expression values that are comparable be-
tween samples.

In addition to this, “limma” package in R was used to
correct for batch effects using an empirical Bayes frame-
work. This method models technical noise (such as se-

7]. For instance, two common activating mutations, GNAQ quencing artifacts or platform-specific effects) while pre-

and GNA11, were identified, enhancing the understanding
of disease pathogenesis and providing a basis for rational
therapeutic options based on their presence. [2,8,9]. Addi-
tionally, through the use of gene expression profile (GEP)-
based classification, UM was divided into two distinct
molecular classes, implicating potential significance in
personalized treatment decisions [10]. Recently, machine
learning (ML) has been used to analyze the interactions
between tumor genes and proteins to understand disease
progression and develop more effective treatment options.
The machine learning algorithms that are frequently em-
ployed include SVM, KNN, LASSO, and Random Forest.
ML algorithms can be used to identify potential biomark-
ers for UM, predict outcomes, and classify tumors into
subgroups for more personalized treatment approaches.
This technology may allow for earlier-stage diagnosis and
help clinicians design individualized treatments that are
based on the specific patient characteristics.

To this end, the current study seeks to identify molec-

ular biomarkers associated with prognosis of uveal melanom

as well as construct risk models by machine learning to
predict patient survival time. Furthermore, we are ex-
ploring the enrichment pathways of these RNAs and the
relation between gene expressions and the fraction of six
immune cells in TIME, in hopes of providing novel in-
sights for the clinical management of UM.

2. Material and Method

2.1. Data Collection

The transcriptome profiling data for Uveal Melanoma

a’

serving biological variability. Finally, to further standard-
ize the data for analysis and comparison, log-transformation
was implemented to all gene expression values to reduce
the effect of outliers and make the distributions of gene ex-
pression across samples more comparable. This combined
approach ensured that differences in gene expression be-
tween UM and normal tissues were primarily biological
and not artifacts introduced by the data collection pro-
cesses.

2.2. Bioinformatic Analysis

The “survival” package in R (version 4.2.2) was used to
calculate the hazard ratio of RNAs, which can identify sig-
nificant genes related to prognosis. This package was also
employed in estimating the relationship between survival
time and different groups, as well as survival time and
significant RNAs in the tumor tissue. Moreover, “Con-
sensusClusterPlus” package was employed with 1000 it-
erations and a resampling rate of 80% to categorize these
remarkable RNAs into distinct subtypes [11]. Enrichment
analyses were conducted for Gene Ontology (GO) and Ky-
oto Encyclopedia of Genes and Genomes (KEGG)using
the “clusterProfiler” package [12]. Additionally, (GSEA)
version 4.1.0 was utilized to discover pathways in which
genes participate [13].

The ‘estimate’ package was utilized to compute the
immunoScore using the ESTIMATE method (Estimation
of STromal and Immune cells in MAlignant Tumor tissues
using Expression data) algorithm [14]. Moreover, cell
type identification was conducted to estimate the TIME in-
filtration levels (CIBERSORT, https://cibersort.stanford.

(UM) was obtained from The Cancer Genome Atlas (TCGA- edu/) [15].

UVM project), comprising 80 UM samples. To ensure
accurate comparison, transcriptome data from 187 nor-
mal tissue samples were also obtained from the Genotype-
Tissue Expression (GTEx) dataset, accessible through the

2.3. Statistical Analysis

Statistical analysis was performed using R version 4.2.2.
The #-test was initially applied to identify the significant
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RNAs between normal and tumor samples. Following
that, Pearson correlation test was employed to examine
the association between the various subtypes and clinical
features, such as stage and age. Subsequently, the LASSO
(Least Absolute Shrinkage and Selection Operator) regu-
lation was utilized to construct the risk model: risk score
= sum of coefficients xexpression levels of RNAs [16].
The Survival curves were generated via the Kaplan—-Meier
method. Additionally, the receiver operating characteris-
tic (ROC) curves was employed to reflect the model’s pre-
dictive ability. And finally, the univariable cox regression
was utilized to identify the significant RNAs associated
with prognosis [17].

3. Result

3.1. Expression Levels of RNAs in UM
and Normal Tissue

The detailed workflow of the present study is shown in Sup-
plementary Figure S1. After gene expression analysis, 32
genes with significant expression levels between normal
and tumor tissue were found (p < 0.01, Figure 1A). Of
these, the expression levels of 20 RNAs were found to be
higher in uveal melanoma tissue as compared to their normal
counterparts, including HLA-DRBI, PHLDA2, PROSER?2,
TOLLIP-AS1, FLYWCH?2, OGDHL, TUBB4A4,AC004925.1,
RMND5A, OTUDI, SCFD2, RBMI5B, WWC(C2-AS2,
ZMAT3, AC112907.2, PTPRH, MFSD3, AC011481.1,
KCNE4, MTIA. The remaining genes, like UPPI, RAB4B,
CAMKI1, IL32, FOXPI, PHYKPL, HSPE1-MOB4, ACOX2,
APIP, NUCB2, MITD1 and SPCS2, were lower in uveal
melanoma than normal tissue.

3.2. Identification of Significant RNAs
Related to Prognosis

Univariate Cox regression revealed that 25 RNAs were
found to be significantly correlated with the overall sur-
vival (OS) of individuals with uveal melanoma (p < 0.05,
Supplementary Figure S2). In addition, the forest plot
indicated that 15 genes showed low hazard ratios, imply-
ing that patients with higher expression levels of these
genes had shorter OS (p <0.001, Figure 1B). For example,
FLYWCH?2, TUBB4A and RBM15B all had lower expres-
sion levels, resulting in longer OS (p < 0.001, Figure 1B).
On the other hand, the remaining RNAs displayed high
hazard ratios, with higher expression levels leading to
shorter OS, such as CAMKI, PHLDA?2, and HLA-DRBI
(» < 0.001, Figure 1B). Among all the high-risk genes,
HSPEI1-MOB4 was found to have the highest hazard ra-
tio, suggesting a possible crucial role in survival rate of

uveal melanoma patients. Furthermore, there were some
genes with significantly positive correlations, especially
between TUBB4A and RBM15B, as well as HLA-DRBI1
and /L32. However, numerous genes exhibited negative
correlations, such as PD-L1 and RMNDS5A, and RBM15B
and NUCB?2 (Figure 1C).

3.3. Relationship between the Survival
Time and RNAs Subtype

Similarity analysis of RNAs expression levels, as well
as ambiguous clustering measure percentages, indicated
that k = 2 was the optimal clustering stability (Figure 2A
and Supplementary Figure S3). This resulted in two dif-
ferent subtypes, namely cluster 1 (n = 53) and cluster 2
(n = 27). Interestingly, the survival rate of the former
was found to be significantly greater than that of the lat-
ter (p < 0.001, Figure 2B). Following a comparison of
clinical characteristics such as age and stage, notable dif-
ferences were observed between the two clusters. To be-
gin with, the expression levels of genes including ZMAT3,
OGDHL, FOXP1, TUBB4A4, RBM15B, AC112907.2, FLY-
WCH?2, TOLLIP—ASI, WWC2—AS2, APIP, RMND5A,
OTUDI, ACOX2, AC004925.1 and KCNE4 were signif-
icantly lower in cluster 2 compared to cluster 1. Con-
versely, the remaining genes exhibited a contrasting re-
sult. Furthermore, the T stage values varied remarkably
between both clusters (Figure 2C).

3.4. Enrichment Analysis about
Prognostic RNAs

Subsequently, the prognostic RNAs of two clusters were
further evaluated for enrichment analysis. Results of the
Gene Ontology (GO) analysis showed that RNAs were
preferentially implicated in Biological Process (BP) and
Molecular Function (MF) (Figure 3A,B). Enriched path-
ways related to immune regulation, such as the regula-
tion of mRNA splicing via spliceosome, positive regu-
lation of B cell receptor signaling, and negative regu-
lation of lymphocyte proliferation, suggest an immune-
active microenvironment. These processes contribute
to a less aggressive tumor profile with better prognosis
(Figure 3C). Key genes involved in cluster 1 UVM in-
clude FOXP1 and TUBB4A, which are linked to enhanced
immune surveillance and anti-tumor immune responses.
The cluster 2 phenotype displayed enrichment in path-
ways such as mRNA processing, regulation of monocyte
differentiation, and dendritic cell antigen processing and
presentation, suggesting a more immune-suppressive tu-
mor microenvironment. Cellular components like the in-
termediate filament and endoplasmic reticulum-plasma
membrane contact site are more prominent in cluster 2
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UVM, highlighting a more aggressive and metastatic poten-
tial, aligned with poor prognosis. Genes such as HSPEI,
CAMKI, and HLA-DRBI contribute to the immune eva-

3.5. Construction and Prediction of Risk
Model of UM

sion mechanisms and enhance the tumor’s ability to progress Using LASSO regression, five RNAs were identified to

and resist immune responses. Additionally, the GSEA
analysis highlighted that in cluster 2, most genes were in-
volved in pathways such as mMTOR (mammalian target of
rapamycin) (normalized enrichment score = 1.647, nor-
malized p-value < 0.001) and P53 pathway (normalized
enrichment score = 1.688, normalized p-value = 0.002)
(Figure 3D,E).

build a risk model for predicting the overall survival (OS)
of patients with uveal melanoma, along with the expres-
sion levels of significant RNAs in the UM training co-
hort (Supplementary Figure S4). This risk model was ex-
pressed as follows:

risk score = FOXPI x (—0.5664) + HSPEI-MOB4 x
2.5721 + CAMKI x 0.5360 + WW(C2-AS2 x
(—=2.0179) + ACOX2 x (—0.4066).
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Based on the median overall risk score, patients with UM
were categorized into two groups: high-risk and low-risk
groups. The survival rate was significantly greater in low-
risk group as compared to high-risk group in both the train-
ing and test cohorts (p < 0.001, Figure 4A). In test group,
we obtained the similar result (Figure 4B).

Additionally, ROC curve analysis was performed to
assess the 5 risk features. In training cohort, the Area Un-
der the Curve (AUC) value was 0.92. On the other hand,
the AUC value was 0.71 in the test set (Figure 4C,D). This
finding supports the effectiveness of the model in accu-
rately predicting the survival rate of patients based on the
transcriptome profiling data.

The expression of HSPE-MOB4 and CAMK were
observed to be significantly increased in the high-risk
group, while the expression of FOXP1, WW(C2-AS2, and
ACOX?2 were significantly decreased in low-risk group.
This was determined by using the risk score to assess the
expressions of each gene in both high and low-risk groups
(as shown in Figure 4E,F).

3.6. Correction between Subtypes and
Level of Immune Cell Infiltration in the
TIME

The relationships between subtypes and levels of immune
cell infiltration in TIME were studied and it was found
that there were six significant immune cells in both clus-
ters 1 and 2, including T cells CD8, T cells CD4 memory
activated, Monocytes, Macrophages M1, Dendritic cells
resting, and Mast cells resting (p < 0.05, Supplementary
Figure S5). However, only the infiltration of Monocytes
was higher in cluster 1 than cluster 2 (p < 0.001). In con-
trast, the remaining five cell types showed lower levels
in cluster 1 than cluster 2 (Figure 5A). Moreover, some
immune markers such as ImmuneScore of cell fraction,
ESTIMATEScore and StromalScore were significantly in-
creased in cluster 2 (p < 0.001, Figure SB-D).

3.7. Relation between Clinical
Characteries and Risk Score

Moreover, when performing the survival analysis, differ-
ences between high and low-risk group were observed in
clinical features such as age (p < 0.001, Figure 6A,B),
gender (p < 0.002, Figure 6C,D), M stage (p < 0.001,
Figure 6E), N stage (p < 0.001, Figure 6F) and T stage
(» <0.001, Figure 6G). On top of that, Figure 6H illus-
trated that ImmunoScore and cluster had remarkable dis-
similarities in both high and low-risk groups (Supplemen-
tary Figure S6).

3.8. Risk Score Associated with the
Immune Cell Infiltration in the TIME

Furthermore, the relationship among the risk score and six
types of immune cells in the tumor immune microenviron-
ment (TIME) of UM was also investigated. The analy-
sis revealed a positive correlation between the risk score
and some immune cells, such as dendritic cells resting,
macrophages M1, T cells CD4 memory activated, and T
cells gamma delta (p < 0.05, Figure 7A-D). Conversely,
some immune cells fractions had a negative relation to risk
score, such as B cells naive, Monocytes, NK cells acti-
vated, Plasma cells (p < 0.05, Figure 7E-H).

4. Discussion

In the last decades, many studies have showed that ex-
pression of RNAs can be used to predict and treat can-
cer. For instance, a high level of SChLAPI expression
has been found to be a meaningful biomarker in prostate
cancer [18]. Similarly, previous research illustrated that
PUS?7 is a potential biomarker for ovarian cancer [19].
Moreover, the expression of some genes has been asso-
ciated with tumor prognosis, which offers new insights
for treatment. For example, RNA levels of topoisomerase
II o (TOP2A) have been identified as a reliable prognos-
tic marker, as well as related to favorable response to
anthracycline-based therapy [20]. In this study, the aim
was to examine the connections between RNAs and uveal
melanoma (UM) in order to explore its molecular patho-
genesis. In this research, we proposed that HSPE-MOB4
has a significant association with the prognosis of UM,
though there is limited research available on this gene.
Therefore, future research should focus on investigating
the association between the expression of HSPE1-MOB4
and treatment options.

HSPE1-MOB4 is a type of fusion transcript, formed
by the adjacent genes HSPE! and MOB4 fused together
for transcription. It has been reported that this fusion tran-
script was observed in the analysis of follicular thyroid
cancer, but its role in UM remains unclear [21]. The onco-
genic fusion gene was initially discovered in malignant
hematological tumors, where the chromosome transloca-
tions frequently lead to the fusion of two genes, producing
abnormal protein products [22,23]. Fusion genes resulting
from chromosome translocations are known to produce ab-
normal protein products and have been recognized as im-
portant prognostic indicators and targets for therapy [24].
Heat shock protein family member 1 (HSPET) is a mem-
ber of the heat shock protein family, which can act as a
“chaperone” in conjunction with heat shock protein fam-
ily D member 1 (HSPD1) to facilitate proper protein fold-
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ing and promote degradation of faulty proteins [25]. Re-
search reports show that compared to non-cancer bladder
epithelial cells, the level of HSPE1 in tumor cells is signifi-
cantly higher, suggesting that HSPE[ may be an effective
tumor tissue biomarker for specific detection of bladder
cancer [26]. Murine human like alpha-chemokine analog
one binder family member 4 (MOB4), is a member of the
MOB family that can bind to protein kinases and play a
role in the transduction of auxiliary signals in the cell [27].
A study by analysis of pan-cancer showed that MOB4 can
bind to PDCD10 (programmed cell death 10) and be in-
volved in the development of different tumors through the
Hippo signaling pathway, RNA transport, mRNA surveil-
lance pathway, internalization process, and T cell receptor
signaling pathway [28].

In this study, altered gene expression profiles were
identified that may be linked to the activation of these
pathways. Specifically, the differential expression of
key genes in the mTOR and P53 pathways, particularly
those with high hazard ratios such as HSPE1-MOB4, HLA-
DRBI, and CAMK1, could be influenced by the hyperacti-
vation of the MAPK/YAP pathways due to GNAQ/GNA11
mutations. These mutations likely contribute to the al-
tered transcriptional landscape we observed, promoting
aggressive tumor phenotypes and poor survival outcomes
in cluster 2 UVM patients. Furthermore, while the GNAQ
and GNA11 mutations themselves do not directly corre-
late with changes in RNA expression levels, they induce
downstream effects that lead to aberrant transcriptional
activity. For example, genes involved in the immune mi-
croenvironment and tumor invasion, such as HLA-DRBI,
are upregulated, potentially as a result of the signaling
cascades initiated by these mutations [2,8,9].

It was indicated in the study that prognostic RNA
in Uveal melanoma (UM) mainly focus on the P53 and
mTOR pathway. Previous researches have showed that
these two pathways are enriched in various cancer types,
such as breast cancer, bladder cancer, lung cancer, and so
on [29-32]. In particular, the P53 pathway has been con-
sidered to be essential for tumor suppression, and thus, has
been utilized for gene therapy, which had met success in
treating non-small cell lung carcinoma (NSCLC) patients,
both in the USA and China [33,34]. This method could
be considered as a potential treatment for UM in the fu-
ture. Apart from that, mTOR is one of the most frequently
mutated or altered pathways in tumors, which plays a cru-
cial role in regulating cell proliferation, growth, differen-
tiation and survival. Several clinical treatments, such as
rapamycin therapy, have been developed to suppress the
mTOR pathway [35-37]. Therefore, it is worth exploring
whether this method can be used to treat Uveal melanoma.

Apart from that, 5 prognostic RNA was identified
to build the risk model and these expressions could be
very useful indicators to diagnose Uveal melanoma in the
clinical. Using this equation, patients can be categorized
into low-risk and high-risk groups, allowing for the pre-
diction of their overall survival. Furthermore, it has been
suggested that the fraction of six immune cell types has
a positive or inverse correlation with the risk score. For
instance, there is a positive correlation between risk score
and fraction of Macrophages M1 and T cells in TIME, im-
plying that these immune cells might promote the devel-
opment and spread of uveal melanoma. Meanwhile, the
four other cell types can act as suppressors of tumor de-
velopment, like NK/B cells, monocytes cells and plasma
cells. Research on the tumor immune environment of can-
cer has been conducted and major (immune)-therapeutic
approaches targeting specific fractions of immune cells
have been studied in ovarian, cervical and breast can-
cer [38—41]. Similarly, UM could potentially be treated
by manipulating the fraction of immune cells; however,
further investigation is needed.

5. Conclusions

After employing various bioinformatics techniques and
statistical analyses, this study proposed that 32 genes sig-
nificantly impact the prognosis of uveal melanoma (UM),
which can be used to construct a risk model for predict-
ing patients’ survival time. Among them, HSPE[-MOB4
demonstrated the highest risk ratio, thus potentially play-
ing an essential role in predicting prognosis of patients
with UM. Additionally, it was discovered that the frac-
tion of certain immune cell types in TIME had either a
positive or negative correlation with changes in the risk
score. Moreover, two subtypes with significantly differ-
ent survival rates have been identified, as well as distinct
pathways associated with them. To gain further insights
into the molecular mechanisms, more research will be nec-
essary to validate the accuracy of our resulting analyses.
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