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Abstract

Alpha-fetoprotein (AFP) delivers nutrients in a shuttle manner to immature cells
through AFP receptor (AFPR)-mediated endocytosis. A small population of immature
myeloid-derived suppressor cells (MDSCs) act as key regulators of immune tolerance during
pregnancy, cancer, and other conditions. MDSCs, low doses of AFP, and AFP-binding ligands
can modulate the innate and adaptive immune response. MDSC decreases excessive immune
activation, while their depletion can cancel immune suppression. The reduction of MDSCs by
AFP and toxins reactivates natural killer (NK) cells, macrophages, and cytotoxic lymphocytes
(CTLs), strengthening both innate and adaptive immune responses. AFP with apoptosis-
inducing toxins specifically destroy MDSCs and cancer cells without pro-inflammatory
byproducts. AFP-toxin complexes or chemical conjugates demonstrate high efficacy, low
toxicity, defined mechanism of action, cost-effectiveness, and are not personalized. AFP
combinations with drugs or traditional medicines represents a targeted immune/chemotherapy
approach for cancer prevention and treatment.

Keywords: cancer immunotherapy, myeloid-derived suppressor cells, Alpha-
fetoprotein receptor, targeted chemotherapy, drug repurposing.

1. Introduction

Cancer remains one of the leading causes of mortality. Many treatments try to destroy
tumor cells directly. On the other hand, the immune system erases them on a regular basis. In
cancer the immune system is tolerant to the malignant cells. Reactivating the immune system is
a physiological strategy able to recognize and eliminate any “wrong” cells.

The immunology of pregnancy and cancer is similar, where the primary cells find
mechanisms to evade immune attack [1,2]. Myeloid-derived suppressor cells (MDSCs) are
immature myeloid progenitors released from the bone marrow or spleen during pregnancy,
under chronic inflammatory conditions such as cancer, and other diseases. MDSCs includes
two major subsets based on their phenotypic and morphological features: monocytic MDSC
(M-MDSC) and polymorphonuclear MDSC (PMN-MDSC, or former G-MDSC) [3]. Normally
rare, they expand in cancer and demonstrate suppressive functions on both innate and adaptive
immunity [4]. MDSCs are essential for maternal—fetal tolerance during pregnancy [5,6], and
used by tumors also. Their presence in cancer creates an immunosuppressive tumor
microenvironment (TME) [7].
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MDSCs inhibit natural killer (NK) cell [8]- and macrophage-mediated clearance of
embryonic or tumor cells. They also promote the expansion of regulatory T cells (Tregs),
thereby suppressing T and B cell responses. Over months to years of tumor development, an
immune system composed of ~1.8 trillion cells (approximately 1.2 kg of immune biomass) [9]
cannot eradicate small populations of cancer cells once MDSCs impair immune recognition,
effectively rendering the host immune system “blind” and preventing a functional antitumor

response (Fig.1).
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Figure 1. 1.2 kg of immune cells cannot smash a small tumor. Myeloid-derived
suppressor cells (MDSCs) and tumor cells can be stimulated by alpha-fetoprotein (AFP) and
docosahexaenoic acid (DHA). In contrast, AFP conjugated with a toxin function as a targeted
immunotherapy against MDSCs and as a targeted chemotherapeutic agent against tumor cells.

Reflecting their central importance, more than 8,600 PubMed-indexed publications
now address MDSCs in cancer, yet only a small fraction investigate the interplay among
MDSC s, oncofetal alpha-fetoprotein (AFP), and AFP-binding ligands.

AFP supports fetal growth by transporting nutrients and promoting immune tolerance.
In healthy adults, AFP expression is minimal, however, it reappears in several malignancies,
most notably hepatocellular carcinoma (HCC) [10], germ cell tumors, and certain
gastrointestinal cancers [11]. Elevated AFP often correlates with tumor burden, aggressiveness,
and poor prognosis. Tumors exploit the same immunoregulatory pathways used during
pregnancy to maintain tolerance to semi-allogeneic fetal tissue, thereby dampening immune
responses [12]. AFP transports nutrients and drugs through AFP receptor (AFPR), thereby
modulating immune regulatory cells' activity. The AFPR is found on human T-lymphocytes
during blast-transformation, on human monocytes, primary macrophages, and cancer cells [13-
16]. The AFPR structure has not yet been elucidated, and several other AFP-binding proteins
have been identified, including chemokine, mucin, and scavenger receptors, as well as
metastasis-related and intracytoplasmic proteins [17,18]. This article focuses on AFPR-
mediated endocytosis of AFP bound with toxins. When AFP selectively delivers toxins into the
AFPR" regulatory immune and cancer cells it helps cancer immunotherapy and cancer

prevention [19].

Traditional medicine provides many bioactive compounds with cytotoxic, anti-
inflammatory, and immune-modulating properties. Many of them shows anticancer activity
while also enhancing immune function [20,21]. When delivered by AFP, such compounds may
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gain selective access to MDSCs and tumor cells, potentially increasing efficacy while reducing
systemic toxicity.

This paper proposes a novel immunotherapeutic concept. Delivering nutrients or
drugs, AFP may suppress hyperactive immune responses, whereas AFP complexed with toxic
compounds from traditional medicine may selectively deplete MDSCs, restore immune effector
functions, and directly destroy tumor cells. Such an approach offers a universal, non-
personalized, and low-toxicity strategy for cancer prevention and treatment. By modulating
immune activity, this therapy enables the body’s own immune cells to recognize and eliminate
malignant cells.

2. Alpha-Fetoprotein: Structure, Function, and Biological Role

The structure, biochemical properties, and clinical roles of AFP have been thoroughly
reviewed in the literature [22-27].

AFP is a 70 kDa oncofetal glycoprotein predominantly synthesized by the fetal liver,
yolk sac, and gastrointestinal (GI) tract during embryonic development and is well recognized
as an immunosuppressive protein [28]. AFP is used as a pregnancy marker [29]. Elevated AFP
levels correlate with pregnancy disorders, or poor tumor prognosis [30].

AFP is a globular protein with 3-5% glycosylation, with a flexible hydrophobic pocket
capable of accommodating fatty acids, bilirubin, steroids, xenobiotics, drugs, and other small
molecules, enabling AFP to function as a natural shuttle carrier protein. During the laboratory
testing, the saturated palmitic C16:0 and stearic C18:0 fatty acids were extracted from 4
binding sites of AFP [31]. Naturally, AFP's hydrophobic cavity fits 1-2 molecules of
polyunsaturated fatty acids (PUFAs) like C22:6 docosahexaenoic acid (DHA) (Fig. 2).
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Figure 2. Serum albumin (A), human (B) and porcine (C) AFP 3D structures
(https://alphafold.ebi.ac.uk). The structure (B) is confirmed by the Cryo-EM structure
generated with PDB ID 8§X1N [31]. DHA: docosahexaenoic acid.

Like the conformational change of haemoglobin upon oxygen binding, DHA binding
alters AFP’s conformation [32], shifts its isoelectric point, increases binding affinity, and
stabilizes AFP: ligand complexes [33,34]. During its 3—5-day half-life, AFP naturally shuttles
dozens of essential ligands into embryo and other AFPR" cells.

Receptor-mediated endocytosis of AFP-ligand complexes in occur placenta, in cancer
cells, human B-lymphoma and T-leukemia cells, and peripheral blood mononuclear cells
(PBMC) [35-38].

The specific AFPR-mediated endocytosis by the small PBMC fraction - M-MDSCs
(~1%) - was discovered by the following experiment. The AFP—daunorubicin conjugate
eliminated ~60% of M-MDSCs, compared with ~8% cell death induced by daunorubicin alone.
In contrast, G-MDSCs exhibited only minimal changes in viability (~18% versus ~20%,
respectively). Notably, non-MDSC populations remained viable following treatments [39].
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This discovery was particularly significant, expanding the relevance of AFP-based delivery to a
major immunosuppressive cell’s population.

AFP crosses the three cellular layers of the hemochorial placenta due to the AFPR
found in the normal human placenta [35], and/or the neonatal Fc receptor (FcRn) [40], and
returns with nutrients. AFP affinity for the essential PUFA DHA is 54 times stronger than that
of albumin [41], and binds it even in a massive excess of albumin in the mother’s blood (35-55
mg/mL) compared to AFP (~150 ng/mL). Interestingly, AFP: DHA complexes remain stable
even during chromatography or electrophoretic procedures. The preferential binding of a ligand
to AFP over albumin causes a significant enhancement of its fetal uptake. Thus, over 70% of
estrone and estradiol injected into the rat’s maternal circulation have been subsequently found
to be associated with AFP in the fetus. Unlike AFP, rodent AFP binds strongly to these
hormones, while artificial estrogens with low binding affinity do not concentrate in the rat fetus
[42]. The AFP pocket can accommodate dioxin or diethylstilbestrol, providing a mechanistic
explanation for their known embryotoxicity [43,44]. Nevertheless, as mutagens and
carcinogens, these toxins cannot be used for cancer treatment. On the other hand,
cyclophosphamide, doxorubicin, bleomycin, vincristine, and etoposide do not bind AFP strong
enough. They may be given safely to a woman in need during any trimester of pregnancy, as
they do not hurt the child or the mother [45].

Porcine AFP (pAFP) shares extensive amino acid and functional homology with AFP
(Fig. 3). Unlike AFP, which has several glycosylated isoforms, mono-glycosylated pAFP
serves both nutrient delivery and immunosuppression functions. PAFP binds ~2.6 moles of
DHA and arachidonic acid per mole of protein [46]. Notably, pAFP transports nutrients and
ligands across the six cellular layers of the epitheliochorial placenta, highlighting its
exceptional transcytosis efficiency and evolutionary specialization for high-binding capacity
ligand delivery [47].

AFP-bound cytotoxic compounds are selectively internalized by cancer cells via
AFPR-mediated endocytosis. Electron microscopy has been used to follow AFP conjugates
with horseradish peroxidase after specific endocytosis. AFP has been reported within coated
pits of the plasma membrane, and tracked to vesicles, endosomes, and a tubular vesicular
network localized in the Golgi-centrosphere region adjacent to the nucleus [48]. Once inside
the cell, toxins can destroy organelles, and induce apoptosis, autodigestion or other regulated
forms of cell death. For example, AFP delivers glycoside atractyloside (ATR) [49] into the
AFPR" cells, where ATR induces mitochondrion damage and consequent apoptosis, road of no
return (Fig. 3) [50].
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Figure 3. AFP specifically delivers glycoside atractyloside to AFPR* cancer cells.
Glycoside targets mitochondria, inducing cell apoptosis undependable of p53 conditions.

3. AFP as an Immunomodulator

Physiological AFP concentrations—approximately 5—10 ng/mL in healthy adults and
10-150 ng/mL during pregnancy—help maintain immune tolerance. Moderately elevated AFP
levels (>7 ng/mL) in otherwise healthy individuals have been associated with protective
metabolic phenotypes, including reduced hepatic steatosis, myosteatosis, and sarcopenia [51].
AFP administration increased muscle strength and endurance in humans and mice; it enhanced
the relative mass of immunotropic organs, improved survival at advanced age mice, and
reduced their auto-aggressive behaviour [52,53]. The AFP effects on immune cells are

summarized in the Table 1 [54-62].

Immune Cell AFP Effect Functional Outcome References
Type / Process

Downregulates major .

Monocytes histocompatibility complex class Rree(igflfeiiirrlflcgaenaci ¢ [54]
II (MHC II) expression P pactty
Promotes polarization toward an |[Immunosuppressive, pro-

Macrophages M2-like phenotype tumor macrophage profile 53]

. Decreased NK-mediated
NK cells Suppression cytotoxicity [56,58]
DCs Inhibits DC function Suppression of NK cell 5,
cytotoxicity

Human Modulates differentiation and Broad immunoregulatory

mononuclear ! . [59]
functional activity effects

leukocytes

Tregs Hlnhibition HDecreased number H[60] ‘
Influences conversion of naive T |[Modulation of adaptive

T helper cells g . [61]
helpers into memory T cells immune responses
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Immune Cell AFP Effect Functional Outcome References
Type / Process
MDSCs Modqlates dltjfe.rentlatlon and Broad immunoregulatory [62]
functional activity effects

Table 1. The AFP effects on immune cells.

Fetal-derived AFP (4 pg/kg/day) produced complete clinical responses in
inflammatory bowel disease (IBD), enabling mucosal healing and steroid administration
reduction [52]. Recombinant not glycosylated AFP (rAFP) was used in patients with active
rheumatoid arthritis [63]. Newer rAFP formulation (ACT-101) surpassed anti-tumor necrosis
factor alpha antibodies in preclinical colitis models, improved symptoms in myasthenia gravis
and IBD [64-66].

AFP transport nutrients, and modulate the immune response via immature myeloid
cells. The AFP properties depend on its ligands [67]. Hence, MDSC is a “double-edged
sword,” playing protective or pathological roles depending on AFP deliveries. This trio
mediate immune protection in autoimmune diseases—including multiple sclerosis, rheumatoid
arthritis, IBD—as well as in allergic conditions and organ transplantation. On the other hand,
they promote the progression of cancers [68,69]. When bound to cytotoxic ligands, AFP
becomes a targeted delivery system that addresses MDSCs and tumor cells, enabling a dual
therapeutic effect: a comprehensive approach to cancer immunotherapy and direct
cytotoxicity [70].

4. Targeting AFP-receptor—positive cells.

The pore-forming anti-fungal antibiotic amphotericin B (AmB) disrupts organelles'
membranes, sparing membrane of the cell, leading this cell to autodigestion. Patients with stage
IV malignancies, were infused with AFP (75-300 pg) which can bind AmB in the blood.
Infusions frequently triggered acute-phase reactions—transient chills and fever. Notably, no
signs of endotoxicity related to rapid tumor lysis were observed. By the end of treatment, three
patients demonstrated 30—40% reductions in primary tumor mass and metastatic burden. Two
patients with lung cancer experienced continued metastatic regression for up to three months
post-therapy. A patient with cerebral metastases showed marked neurological improvement,
including recovery of swallowing and hand mobility, along with resolution of pleural
carcinomatosis. Pain abated in three patients and did not recur for up to four months. Three
patients gained more than 5 kg, and one maintained a stable weight. Overall, AFP: AmB
infusions produced objective clinical responses in six of eight treated patients [71,72].

5. MDSC and Cancer Immune Evasion

MDSCs is a small heterogeneous cell population of immature myeloid progenitors of
granulocytes, macrophages, and dendritic cells (DCs) generated from a common hematopoietic
stem cell [73,74]. MDSCs expand under both physiological and pathological conditions,
including cancer, chronic inflammation, autoimmunity, bacterial, viral, and parasitic infections,
sepsis, obesity, trauma, and psychological stress [75]. Currently, no unique markers or
signalling pathways definitively identify MDSCs, possibly because these immature cells
occupy a transitional stage within the continuum of suppressive myeloid cell differentiation
[76,77].

MDSC:s are the key immune suppression cells, above Tregs, they exert activity
through multiple mechanisms inhibiting both innate and adaptive responses (Fig. 4) [78]. Their
accumulation correlates with tumor progression, metastasis, and poor clinical outcomes [79].
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Figure 4. MDSC suppress the immune response by different mechanisms. Adapted
from [78].

6. MDSC as Therapeutic Targets

The DC’s and MDSC’s suppressive function are stimulated by AFP and PUFAs
[80,81]. MDSCs regulate maternal—fetal tolerance, they support implantation and fetal survival
[5,6]. On the opposite, MDSC depletion in mice leads to pregnancy loss due to decidual NK
cells activation [82,83]. Similarly, MDSC depletion in cancer by AFP: toxin unleashes NK cell
and cytotoxic lymphocytes (CTLs) and leads to tumor elimination.

Cancer can be detected 3-5 years before clinical diagnosis [84,85], and the immune
system could theoretically be “awakened” at any stage of tumor evolution by timely MDSC
depletion. Like a pregnancy prevention, a cancer preventive/therapeutic MDSC-depletion
vaccine can be applied to protect from cancer or improve patient outcomes.

MDSC targeting is a promising strategy in cancer immunotherapy [86-89]. Depleting
MDSCs or blocking their suppressive pathways enables NK cells, macrophages, and CTLs to
effectively recognize and eliminate malignant cells. Importantly, the absolute number of
MDSCs—both systemically and within the PBMC compartment—is relatively small (~1%),
meaning that effective MDSC-depleting therapies may require significantly lower doses
compared to traditional cytotoxic chemotherapies.

MDSC and Treg levels are prognostic factors in cancers [90,91]. For example, in
preoperative patients with MDSC levels >1.0% of total PBMCs, the overall survival of patients
with stage IV breast cancer was significantly shorter compared with other disease stages, and
was also significantly shorter compared with patients with MDSC levels <1.0% of total
PBMCs [92].

Inoculation of MDSC from donor mice supported tumor growth in recipient animals
[93]. In murine models, a single AFP dose increased MDSC numbers, reduced NK cell activity
by ~20%, and accelerated tumor growth by ~60% [94]. Through MDSC, AFP indirectly
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suppresses NK cell cytotoxicity and CTL responses while promoting Treg differentiation. AFP
plays a pivotal role in MDSC biology, acting as a complementary and synergistic regulator of
these cells. AFP and MDSC levels correlate with response to immune checkpoint inhibitors in
cancers [95-97]. HCC cells produce tumor AFP (tAFP), which binds and transports nutrient to
AFPR" cells, promoting tumor growth and metastasis. The AFP and tAFP isoforms differ only
at one glycosylation carbohydrate. tAFP inhibited differentiation of a monocyte-like DCs,
which produced less of inflammatory mediators, and cancelled T cell responses. The tAFP
immunosuppressive activity dependents on impurities bound with tAFP in both tumor and
nontumor cell lysates. tAFP serves as a delivery protein for small molecules, deteriorating DC
differentiation and function [57,58]. The lipid uptake by AFP is known as a key of TME
composition and immune response [80,81].

The high level of AFP accumulation was detected in the tumor tissue, reaching 6% of
the injected amount per 1 g of tissue [98]. So, both AFP: PUFA and tAFP: small molecules
suppress the immune response in cancer, while the opposite result can be achieved by AFP:
toxin.

The replacement of PUFA with toxin for the AFP-mediated delivery was first
introduced in 1983. PUFA—daunomycin conjugate bound tAFP and exhibited potent
cytotoxicity against rat hepatoma cells both in vitro and in vivo [99]. On the other hand, toxins
that directly bind tAFP or AFP can be administered separately or as pre-formed non-covalent
complexes. Alternatively, AFP—toxin conjugates can be manufactured by chemical coupling
[100,101]. Each strategy enables selective delivery to MDSCs and cancer cells.

Bioactive constituents from traditional medicines provide an additional means of
modulating MDSCs activities [102]. As a result, many MDSC-dependent diseases may be
sensitive to AFP-based immunotherapeutic intervention [103-110].

7. AFP-Toxin Immunotherapy Versus Conventional Chemotherapy

Chemotherapy Abraxane delivers albumin + 100 mg paclitaxel to cancer cells [111].
In contrast, sub-cytotoxic doses of AFP: toxins, that function primarily through immune
reactivation rather than bulk tumor cell killing, selectively deplete MDSC, restore NK- and T-
cell activity, and generate robust antitumor responses with minimal systemic toxicity.

The elimination of metastases observed during AFP: AmB infusions cannot be fully
explained by direct cytotoxicity against AFPR* cancer cells, given the extremely low doses of
AFP (14 pg/kg) and AmB used (<17 mg) [71,72]. Several clinical observations support an
immune-mediated mechanism:

1. Transient monocytopenia: Treatment briefly reduced circulating monocytes, while the
peripheral blood lymphocyte-monocyte ratio (LMR) is closely associated with the
prognosis of many tumors [112,113].

2. Infusion-associated fever and chills: These acute-phase reactions preceded tumor
regression and resembled the mild cytokine release syndrome associated with rapid
MDSC death and subsequent immune activation.

3. Durable responses after therapy cessation: Clinical improvements continued for up to
three months after a one-month treatment course, indicating sustained immune-
mediated tumor control rather than a short-lived direct cytotoxic effect.
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4. New tactile awareness of metastases: Some patients reported sensation or discomfort in

metastatic sites post-treatment, consistent with renewed immune recognition of

previously immunologically “silent” lesions.

Together, these findings suggest that AFP: AmB infusions produce dual therapeutic

benefits: (1) immunomodulation via MDSC depletion and immune reactivation, and (2)

targeted chemotherapy delivery to cancer cells.

The superiority of AFP: toxin therapy is most apparent in immunocompetent systems.
Nude mice require substantially higher doses than immunocompetent mice or human patients,
underscoring that therapeutic benefit depends on an intact capacity for immune restoration.

Because of its low-dose, and immune-rebalancing mechanism, AFP: toxin therapy
holds promise for prevention, early-stage cancers, metastatic disease, and for use in
combination with other anticancer modalities.

8. Safety and Risks Considerations
Safety and risks of AFP: toxin cancer immunotherapy are summarized in the Table 2 [52, 114].

inducers

risks

. Safety Implication / |References /
Aspect Key Point Outcome Notes
) AFP administered at doses known to
AFP dosing and i o .
. . be safe; cancer incidence comparable |Low intrinsic
physiological o [52]
between pregnant and non-pregnant |joncogenic risk
exposure women
Clinical use of natural Nat“Fal AFP reglstered apd used in Established safety and
AFP Russia for autoimmune diseases and therapeutic efficacy [52]
cancer (4 pg/kg/day)
Recombinant AFP Biosimilar rAFP (ACT-101) enables Expands therapeuﬂc
(rAFP) delivery of AFP-binding toxins options with [114]
Ty & maintained safety
Toxin dose and Sub-cytotoxic toxin doses non- No damage to normal |
binding covalently bound to AFP (2:1) cells
Toxins are non-mutagenic and non-  |[Reduced long-term
Toxin selection carcinogenic; act as direct apoptosis |[cancer and genetic Fig. 3

Drug repurposing

AFP-binding embryotoxic or
teratogenic drugs may be repurposed

Facilitates clinical
translation using
registered drugs

Target cell abundance

Regulatory immune cells are less
abundant than effector cells

Lower drug doses
required, improved
treatment safety

MDSC depletion in
circulation

Depletion associated with fever and
chills preceding tumor regression

Predictable,
manageable immune-
related effects

MDSC localization

Bone marrow—resident MDSCs not
exposed to AFP: toxin complexes

Limits excessive
myeloid depletion
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Aspect Key Point Outcome Notes
Clear and familiar
Contraindications Like pregnancy and breastfeeding clinical exclusion —

criteria

AFP—toxin chemical
conjugates

Prevent toxin release outside cancer
cells in acidic TME

Enhanced safety
compared to non-
covalent complexes

AFP growth-
stimulating effects

Covalent conjugation eliminates AFP-
mediated tumor stimulation

Improves therapeutic
specificity

Preclinical efficacy
(ACT-903)

AFP-maytansine conjugate induced
complete tumor regression in COLO-
205 xenografts

Strong anti-tumor
efficacy

[114]

Systemic toxicity
(ACT-903)

No systemic toxicity at 20—40
mg/kg/day

Favorable safety
profile

[114]

Cancer models

Efficacy demonstrated in colorectal
and ovarian cancer xenografts

Supports clinical
advancement

[114]

Potential risks

Broad MDSC depletion and risk of
autoimmunity

Requires careful
immune monitoring

Risk mitigation

Adverse effects may be managed via
treatment adjustments

Improves clinical
controllability

Table 2. Safety and risks of AFP—toxin cancer immunotherapy.

9. Lessons from Traditional Fertility Control

Some traditional medicines historically used as contraceptives may also exert

anticancer effects, reflecting shared reliance on immune-tolerance pathways in both pregnancy
and tumor development. Natural agents can reduce or modulate MDSC populations and display
antitumor activity that may be partially mediated through AFP-based transport to cancer and
AFPR*" immune cells. Silphium—an extinct herbal contraceptive—has been speculated to

influence HCC, where tAFP levels are elevated [19]. Artemisinin, used in antiquity as a

contraceptive and now known for its potent antimalarial activity, also exhibits anticancer
effects and downregulates MDSC [115]. Its affinity for AFP suggests that its modern oncologic
potential may echo its historical role in reproductive modulation. Withaferin A, from Withania
somnifera (Ashwagandha), similarly suppresses MDSC activity and induces apoptosis in tumor
cells [116]. Most medical guidance recommends avoiding ashwagandha during pregnancy.

AFP-binding embryotoxic and teratogenic compounds may be used for cancer

therapy. In combination with AFP or pAFP, agents such as warfarin [117], retinoids [118,119],
glycyrrhizic acid [120], thalidomide, isotretinoin, etc., may prevent or treat cancer.

Many women benefit from oral contraceptives that can reduce women's risk with
some cancers [121,122]. For example, pregnancy-preventing drug mifepristone (RU486)

inhibits embryonic implantation and modulates macrophage-regulated NK cell activity,

enhancing their cytotoxicity and migration in a dose-dependent manner [123]. Mifepristone
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induces apoptosis through mitochondrial protein imbalance, and has shown promise in treating
various cancers, including metastatic lung cancer resistant to immune checkpoint inhibitors
[124]. A pregnancy prevention mechanism can be not only blocking the hormone progesterone,
but also both the decrease of MDSC activity and the toxin direct action on embryo cells.
Hence, like oral mifepristone prevents pregnancy, AFP: mifepristone can possibly prevent
cancer.

AFP increases ligand stability, reducing renal clearance, and prolonging circulating
half-life. Such AFP-bound compounds retain selective uptake by AFPR" cells and can be
administered orally, leveraging gut-associated lymphoid tissue (GALT) for systemic immune
modulation.

10. AFP Potentiates Traditional Medicine—-Derived Compounds in Immunotherapy

Natural compounds and functional foods are often regarded as safer alternatives to
synthetic drugs. Many traditional medicines contain ingredients that have demonstrated
immunotherapeutic potential, that selectively “feed” key regulatory immune cells thereby
shaping the immune response [125]. As of late 2024, 125 natural products and their derivatives
were in clinical trials or the registration phase [126]. Herbal agents can influence MDSC
through several mechanisms, including blocking AFP-MDSC interactions, reducing MDSC
suppressive activity, altering the ligand carried by AFP, or directly depleting MDSCs. MDSCs
are “here, there, and everywhere”, acting not only in pregnancy and cancer [127].
Consequently, AFP also participate in immune balance regulation. The interaction among
MDSCs, AFP, and AFP-bound ligands forms an immunoregulatory trio that operates in both
physiological and pathological contexts [128].

In oncology, robust antitumor responses can be achieved by administering sufficient
AFP to act as a shuttle together with moderate toxins, by delivering preformed AFP: toxin
complexes, or AFP-toxin chemical conjugates.

The moderate anticancer agents genistein, curcumin, artemisinin, and resveratrol
suspensions in oil show improved absorption and enhanced cytotoxicity [129]. These agents
can also bind tAFP or AFP. Through these binding botanical compounds are targeted to
MDSCs and become immunomodulators. Thus, curcumin suppresses MDSC expansion and
promotes immune activation; genistein, resveratrol, and artemisinin exhibit similar effects.
Curcumin and genistein bound to rAFP, demonstrate elevated antitumor activity [130].

1'-S-1"-Acetoxychavicol acetate (ACA) from Alpinia species has anticancer properties
[131]. When complexed with AFP at a 1:1-3 ratio, ACA demonstrated potent antitumor
activity [132]. As a food, ACA may possibly support immunity through AFP-mediated
shuttling during lifetime.

At a conventional 15 mg/kg dose, paclitaxel from Taxus species has demonstrated
direct cytostatic or cytotoxic effects on melanoma cells. In contrast, paclitaxel in low non-
cytotoxic concentrations (1 mg/kg, weekly x 3) significantly decreased the accumulation and
immunosuppressive activities of tumor infiltrating MDSCs. It has also reversed
immunosuppression and chronic inflammation. In low non-cytotoxic doses, paclitaxel is unable
to directly suppress tumor cell proliferation, induce apoptosis, or alter the bone marrow
hematopoiesis, but it modulates the functions of MDSCs in primary skin tumors and lymphoid
organs, affect the production of mediators of chronic inflammation and T cell activities in the
TME, prolong mice survival, and reduce the melanoma burden. The low non-cytotoxic
paclitaxel doses have also been used for enhancing the efficacy of accompanying anti-cancer
therapies [133]. So, immunotherapeutic impact outweighs paclitaxel’s cytotoxic one. When
complexed with AFP at a 1:2 molar ratio, paclitaxel becomes water-soluble, gains an extended
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half-life, and selectively targets the AFPR* cells. The AFP: paclitaxel complex (ACT-901)
improves survival and reduces toxicity compared to high-dose paclitaxel [134].

Thapsigargin (TG), a highly potent toxin from Thapsia garganica, is unsafe when
administered systemically [135], but rAFP (ACT-101): TG at a 1:2 ratio (ACT-902) induces
~32% MDSC death in vitro (versus 5% in controls) and, at 0.15 mg/kg, produced complete
tumor regression in five of six nude mice within seven days [114]. Notably, nude mice are
deficient in T cells, which play a critical role in the immune response. Consequently,
immunocompetent mice are expected to demonstrate improved outcomes at lower doses. Oral
pAFP: TG formulations have also demonstrated strong anticancer activity in mice [72].

Rodenticide rotenone, a botanical mitochondrial inhibitor (ICso: 0.8—4 nM), is
moderately toxic in humans at high doses (oral LDso ~300-500 mg/kg). Gavage with pAFP:
rotenone has shown significant inhibition of tumor growth in mice [72].

Overall, the potency of pAFP: toxin complexes correlate with toxin strength:
TG, ATR, rotenone > betulinic acid [136], ajoene [137]> tocotrienol, vitamin Ds [138], while
adjunctive betulinic acid or ajoene further improve therapeutic outcomes [72].

11. Oral Delivery
“Let food be thy medicine, and let medicine be thy food.” (Hippocrates)

The poor GI absorption, and low bioavailability usually prevents the oral protein-
based drugs administration [139]. Nevertheless, AFP or pAFP are candidates for oral
formulations [140].

The FcRn-mediated transcytosis through placenta and GI enterocytes is known for
immunoglobulin G: antigen and albumin: ligand complexes [141]. AFP: ligand also crosses
several cell layers of placenta, and AFP has an even stronger binding affinity to FcRn [142].
That possibly allows AFP: ligand complexes to reach FcRn* and/or AFPR* regulatory immune
cells in the mucosa and regional lymph nodes.

At 5-7 uM (350-490 pg/mL), full-length AFP induce apoptosis in HCC cells. The
main role was attributed the AFP molecule, but not to its ligands [143].

A peptide mimicking the anti-estrogenic, anti-breast-cancer active site of AFP was
isolated and developed into a nine—amino acid cyclic peptide (~1.2 kDa). This peptide inhibited
the development and growth of mammary tumors in rodent models. In non-human primates,
intravenous (IV) administration at 4 mg/kg achieved peak plasma concentrations of ~13
pg/mL. This exposure exceeds, on a molar basis, the concentrations of full-length AFP (70
kDa) reported to induce apoptosis (350-490 ug/mL), reflecting the substantially lower
molecular weight of the peptide (70 kDa vs. 1.2 kDa). So, the peptide, like a full-length AFP,
can induce apoptosis in cancer cells. An oral peptide administration resulted in minimal
systemic exposure, with plasma levels of approximately 0.03 pg/mL, corresponding to an
estimated oral bioavailability of ~0.23%. AFP peptide at concentrations >0.1 ug/mL was
sufficient to inhibit tumor xenografts in mice [144].

Nevertheless, AFP-toxin non-covalent complexes or conjugates are more potent than
full-length AFP or AFP peptides, as they additionally deliver cytotoxins (e.g., 1:5.9 molar ratio
in ACT-903) [100,101]. Moreover, partial MDSC depletion is sufficient to “tip” the immune
system toward activation, enabling endogenous effector cells to eliminate tumors.

Glycoside ATR (Fig. 3), the major bioactive constituent of Callilepis laureola—used
in Zulu medicine as a decoction for gastrointestinal and reproductive disorders [145], that
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allows to test it as an oral medicine in cancer too. The oil-based ATR formulations have
demonstrated antitumor activity in mouse models [146]. In high doses, ATR inhibits the
development, as well as the metastasis, of colon cancer, and is under active investigation as a
TME modulator [49]. Aimpila is a 1:2 molar complex of pAFP: ATR, it is an example of an
oral cancer immunotherapy. In Ca-755 breast adenocarcinoma models, gavage of mice with
Aimpila significantly extended survival without observable toxicity [72].

Clinical observations are consistent with preclinical data supporting the efficacy and
safety of AFP: ATR therapy. Aimpila delivers 0.012 mg ATR/day—orders of magnitude below
known toxicity thresholds, given that the oral LDso of ATR in rodents ranges from 25 to 100
mg/kg. In an initial study of 16 patients with advanced solid tumors (colon, stomach, breast,
and liver), administration of two Aimpila capsules/day (containing 0.3 mg pAFP and 0.006 mg
ATR) for one month resulted in approximately 20% improvements in Karnofsky indexes. No
adverse events were reported [72].

12 patients with liver-metastatic colorectal cancer (mCRC) received two Aimpila
capsules per day for two months. Computer tomography before and after eight weeks of
therapy showed responses in six of the twelve patients. Two achieved complete disappearance
of small metastases, one exhibited a 73% reduction in metastatic burden, and three achieved
disease stabilization. Tumor-growth inhibition and regression occurred without notable
toxicity. Two of the responders had previously undergone chemotherapy, suggesting that
Aimpila may help overcome multi-drug resistance (Fig.3). Serum carcinoembryonic antigen
levels declined from 816 to 268 ng/mL in a patient with complete response, and from 1,243 to
638 ng/mL in a patient with stable disease. Two patients survived more than five years,
exceeding the ~9-month median survival for mCRC [147,148].

A woman with stage IV ovarian cancer received 6.0 mg pAFP + 0.12 mg ATR daily
and survived more than 10 years post-diagnosis [72].

AFP fragments have only ~0.23% oral bioavailability [144]. Hence, a dose of 0.6 mg
pAFP in Aimpila is ~1.38 ng/mL in plasma, that is below cytotoxic AFP or AFP fragments
concentrations (350—490 pg/mL, and >0.1 pg/mL accordingly). Nevertheless, therapeutic
responses are consistently observed in both clinical and preclinical settings. This indicates that
oral Aimpila act primarily through immunological modulation rather than direct systemic
cytotoxicity. Supporting this, gavage of a pAFP: rotenone (1:2) complex in mice produced no
detectable plasma levels of either component yet significantly suppressed tumor growth [72].
These findings suggest that activation of GALT and selective modulation or depletion of
MDSCs and related immune populations is the principal mechanism of action.

Collectively, these data support a model in which oral AFP: ligand formulations act
primarily as immune modulators. Their effects can be due to FcRn-mediated transcytosis and
lymphatic trafficking and targeting of AFPR* immune cells. Rather than relying on plasma
drug levels or direct tumor exposure, these complexes modulate systemic immunity from the
intestinal immune system. Compared to injections, oral administration is more convenient and
safer for patients, making AFP-toxin oral formulations an attractive cancer immunotherapy.

12. Clinical outcomes in cancer patients

Combining AFP with traditional medicine compounds offer a new way for cancer
immunotherapy with minimal adverse effects. Human rAFP (ACT-101) is characterized
clinically [114]. Pharmacokinetic advantages of intravenous (IV) or subcutaneous
administration are improved bioavailability and prolonged circulation half-life. Unlike
conjugates, AFP-shuttle can deliver dozens of toxins during its 3-5 days of half-life circulation.
AFP: toxin therapy may complement existing treatments due to its reduced toxicity.
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Because MDSCs and many solid and hematologic malignancies are AFPR", the
preselection of patients for AFPR expression is unnecessary. Through coordinated depletion of
MDSC and activation of effector immune cells, AFP: toxin therapies may restore immune

competence and promote the memory. Summary of clinical outcomes in cancer patients are
presented in Table 3.

Patients H Treatment H Outcome H Ref. ‘
51 cancer pts AFP 4 pg/ke/day ﬁlrrﬁlo-f:ncer effect on differentiated £5827,]p.273-
6/8 responses, 3 pts with 30-40%
8 cancer pts AFP 4 pg/kg + AmB tumor inhibition/regression [71,72]
16 pts with
advanced solid PAFP 0.6 mg + ATR ~20% TKPI [72]
0.012 mg/day (oral)
tumors
pAFP 0.6 mg + ATR ||6/12 responses; tumor
12 mCRC pts 0.012 mg/day (oral) |[inhibition/regression; 2 OS > 5 yrs [147.148]
1 stage IV ovarian |[pAFP 6 mg + ATR
cancer pt 0.12 mg/day (oral) OS> 10 yrs [72]

Table 3. Summary of clinical outcomes in cancer patients treated with AFP, pAFP,
and AFP-toxin combinations. AFP, alpha-fetoprotein; pAFP, porcine AFP; ATR, atractyloside;
AmB, amphotericin B; mCRC, metastatic colorectal cancer; KPI, Karnofsky Performance
Index; OS, overall survival.

AFP: toxin complexes represent a novel immunotherapeutic approach. Studies on
efficacy, safety, and ligand optimization will be essential to translate these discoveries into
effective therapeutic and preventive tools.

13. Conclusions

AFP naturally delivers nutrients to immature AFPR* cells, including a small
population of immunosuppressive MDSCs that orchestrate immune tolerance during
pregnancy, cancer, and other conditions. The MDSCs, AFP, and AFP-bound ligands
interaction generate a dynamic immune response ‘“here, there, and everywhere”. Nutrients can
stimulate MDSCs, thereby suppressing the activated immune system, while toxins with AFP
selectively destroy MDSCs, providing a novel cancer immunotherapy that reactivate NK cells,
macrophages, and cytotoxic T lymphocytes. Preliminary experiments have shown that AFP—
toxin conjugates and non-covalent complexes combine selective cytotoxicity against MDSCs
and malignant cells. The combined effects enhance natural antitumor immune response and
possibly restore memory. The low doses of apoptosis-inducing toxins can eliminate targeted
cells without generating pro-inflammatory byproducts. AFP: toxin complexes and conjugates
are not personalized, they can be proposed as prophylactic agents and combined with other
treatments. rAFP platforms like ACT-101 may streamline and accelerate clinical development
of AFP-binding already-registered cytotoxic drugs, but they do not eliminate the need for
clinical trials. Harnessing AFP’s natural biological functions alongside the pharmacological
potency of traditional medicine active ingredients provide a biologically based, low-toxicity,
and wide immunotherapy platform.

AFP: toxin non-covalent complexes or covalent conjugates injectable or oral
formulations are mechanistically understood, highly efficacious, low in systemic toxicity, cost-
effective, and patient-friendly. This approach offers a promising avenue toward durable cancer
control and restoration of immune competence.
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Abbreviations

AFP  Alpha-fetoprotein

pAFP Porcine AFP

rAFP Recombinant AFP

tAFP tumor-derived AFP

AFPR AFP receptor

AmB amphotericin B

ATR Atractyloside

mCRC metastatic colorectal cancer
CTL Cytotoxic T lymphocyte

DC  Dendritic cell

DHA Docosahexaenoic acid

FcRn Neonatal Fc receptor

GALT Gut-associated lymphoid tissue
GI Gastrointestinal

KPI  Karnofsky Performance Index
HCC Hepatocellular carcinoma
IBD Inflammatory bowel disease
v Intravenous

LDso Median lethal dose

MDSC Myeloid-derived suppressor cell
NK  Natural Killer

oS Overall survival

p53  Tumor protein 53

PBMC Peripheral blood mononuclear cells

PUFA Polyunsaturated fatty acid
TG  Thapsigargin
Treg Regulatory T cell

TME Tumor microenvironment
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