

Here, there, and Everywhere: Alpha-fetoprotein in Cancer Immunotherapy

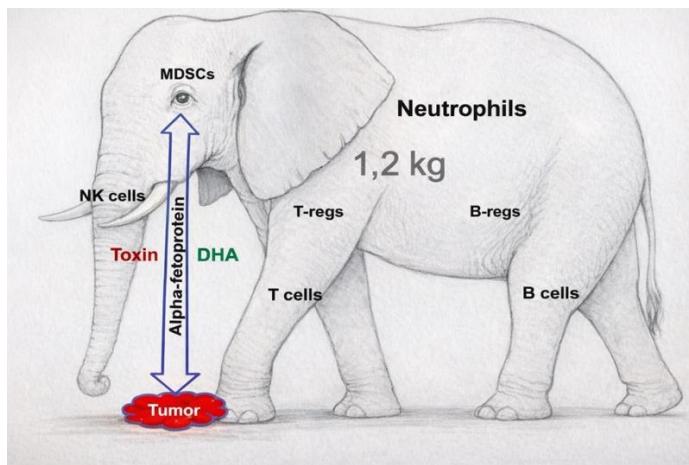
Vladimir N. Pak

Omega Alpha Pharmaceuticals Inc., 795 Pharmacy Avenue, Toronto, On, M1L 3K2 Canada

email: oncoshut@gmail.com

Abstract

Alpha-fetoprotein (AFP) delivers nutrients in a shuttle manner to immature cells through AFP receptor (AFPR)-mediated endocytosis. A small population of immature myeloid-derived suppressor cells (MDSCs) act as key regulators of immune tolerance during pregnancy, cancer, and other conditions. MDSCs, low doses of AFP, and AFP-binding ligands can modulate the innate and adaptive immune response. MDSC decreases excessive immune activation, while their depletion can cancel immune suppression. The reduction of MDSCs by AFP and toxins reactivates natural killer (NK) cells, macrophages, and cytotoxic lymphocytes (CTLs), strengthening both innate and adaptive immune responses. AFP with apoptosis-inducing toxins specifically destroy MDSCs and cancer cells without pro-inflammatory byproducts. AFP-toxin complexes or chemical conjugates demonstrate high efficacy, low toxicity, defined mechanism of action, cost-effectiveness, and are not personalized. AFP combinations with drugs or traditional medicines represents a targeted immune/chemotherapy approach for cancer prevention and treatment.


Keywords: cancer immunotherapy, myeloid-derived suppressor cells, Alpha-fetoprotein receptor, targeted chemotherapy, drug repurposing.

1. Introduction

Cancer remains one of the leading causes of mortality. Many treatments try to destroy tumor cells directly. On the other hand, the immune system erases them on a regular basis. In cancer the immune system is tolerant to the malignant cells. Reactivating the immune system is a physiological strategy able to recognize and eliminate any “wrong” cells.

The immunology of pregnancy and cancer is similar, where the primary cells find mechanisms to evade immune attack [1,2]. Myeloid-derived suppressor cells (MDSCs) are immature myeloid progenitors released from the bone marrow or spleen during pregnancy, under chronic inflammatory conditions such as cancer, and other diseases. MDSCs includes two major subsets based on their phenotypic and morphological features: monocytic MDSC (M-MDSC) and polymorphonuclear MDSC (PMN-MDSC, or former G-MDSC) [3]. Normally rare, they expand in cancer and demonstrate suppressive functions on both innate and adaptive immunity [4]. MDSCs are essential for maternal-fetal tolerance during pregnancy [5,6], and used by tumors also. Their presence in cancer creates an immunosuppressive tumor microenvironment (TME) [7].

MDSCs inhibit natural killer (NK) cell [8]— and macrophage-mediated clearance of embryonic or tumor cells. They also promote the expansion of regulatory T cells (Tregs), thereby suppressing T and B cell responses. Over months to years of tumor development, an immune system composed of ~1.8 trillion cells (approximately 1.2 kg of immune biomass) [9] cannot eradicate small populations of cancer cells once MDSCs impair immune recognition, effectively rendering the host immune system “blind” and preventing a functional antitumor response (Fig.1).

Figure 1. 1.2 kg of immune cells cannot smash a small tumor. Myeloid-derived suppressor cells (MDSCs) and tumor cells can be stimulated by alpha-fetoprotein (AFP) and docosahexaenoic acid (DHA). In contrast, AFP conjugated with a toxin function as a targeted immunotherapy against MDSCs and as a targeted chemotherapeutic agent against tumor cells.

Reflecting their central importance, more than 8,600 PubMed-indexed publications now address MDSCs in cancer, yet only a small fraction investigate the interplay among MDSCs, oncofetal alpha-fetoprotein (AFP), and AFP-binding ligands.

AFP supports fetal growth by transporting nutrients and promoting immune tolerance. In healthy adults, AFP expression is minimal, however, it reappears in several malignancies, most notably hepatocellular carcinoma (HCC) [10], germ cell tumors, and certain gastrointestinal cancers [11]. Elevated AFP often correlates with tumor burden, aggressiveness, and poor prognosis. Tumors exploit the same immunoregulatory pathways used during pregnancy to maintain tolerance to semi-allogeneic fetal tissue, thereby dampening immune responses [12]. AFP transports nutrients and drugs through AFP receptor (AFPR), thereby modulating immune regulatory cells' activity. The AFPR is found on human T-lymphocytes during blast-transformation, on human monocytes, primary macrophages, and cancer cells [13-16]. The AFPR structure has not yet been elucidated, and several other AFP-binding proteins have been identified, including chemokine, mucin, and scavenger receptors, as well as metastasis-related and intracytoplasmic proteins [17,18]. This article focuses on AFPR-mediated endocytosis of AFP bound with toxins. When AFP selectively delivers toxins into the AFPR⁺ regulatory immune and cancer cells it helps cancer immunotherapy and cancer prevention [19].

Traditional medicine provides many bioactive compounds with cytotoxic, anti-inflammatory, and immune-modulating properties. Many of them show anticancer activity while also enhancing immune function [20,21]. When delivered by AFP, such compounds may

gain selective access to MDSCs and tumor cells, potentially increasing efficacy while reducing systemic toxicity.

This paper proposes a novel immunotherapeutic concept. Delivering nutrients or drugs, AFP may suppress hyperactive immune responses, whereas AFP complexed with toxic compounds from traditional medicine may selectively deplete MDSCs, restore immune effector functions, and directly destroy tumor cells. Such an approach offers a universal, non-personalized, and low-toxicity strategy for cancer prevention and treatment. By modulating immune activity, this therapy enables the body's own immune cells to recognize and eliminate malignant cells.

2. Alpha-Fetoprotein: Structure, Function, and Biological Role

The structure, biochemical properties, and clinical roles of AFP have been thoroughly reviewed in the literature [22-27].

AFP is a 70 kDa oncofetal glycoprotein predominantly synthesized by the fetal liver, yolk sac, and gastrointestinal (GI) tract during embryonic development and is well recognized as an immunosuppressive protein [28]. AFP is used as a pregnancy marker [29]. Elevated AFP levels correlate with pregnancy disorders, or poor tumor prognosis [30].

AFP is a globular protein with 3-5% glycosylation, with a flexible hydrophobic pocket capable of accommodating fatty acids, bilirubin, steroids, xenobiotics, drugs, and other small molecules, enabling AFP to function as a natural shuttle carrier protein. During the laboratory testing, the saturated palmitic C16:0 and stearic C18:0 fatty acids were extracted from 4 binding sites of AFP [31]. Naturally, AFP's hydrophobic cavity fits 1-2 molecules of polyunsaturated fatty acids (PUFAs) like C22:6 docosahexaenoic acid (DHA) (Fig. 2).

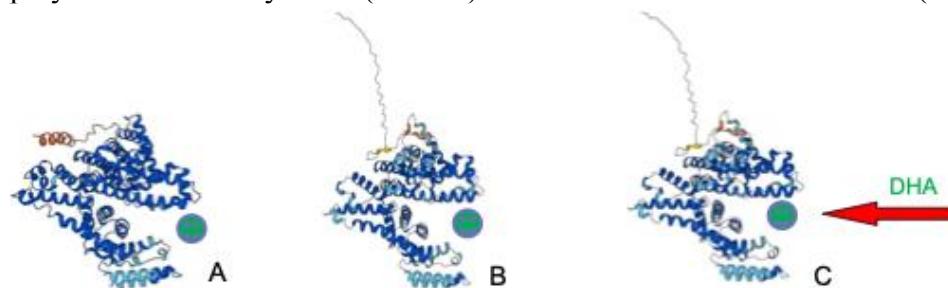


Figure 2. Serum albumin (A), human (B) and porcine (C) AFP 3D structures (<https://alphafold.ebi.ac.uk>). The structure (B) is confirmed by the Cryo-EM structure generated with PDB ID 8X1N [31]. DHA: docosahexaenoic acid.

Like the conformational change of haemoglobin upon oxygen binding, DHA binding alters AFP's conformation [32], shifts its isoelectric point, increases binding affinity, and stabilizes AFP: ligand complexes [33,34]. During its 3–5-day half-life, AFP naturally shuttles dozens of essential ligands into embryo and other AFPR⁺ cells.

Receptor-mediated endocytosis of AFP-ligand complexes occur in placenta, in cancer cells, human B-lymphoma and T-leukemia cells, and peripheral blood mononuclear cells (PBMC) [35-38].

The specific AFPR-mediated endocytosis by the small PBMC fraction - M-MDSCs (~1%) - was discovered by the following experiment. The AFP-daunorubicin conjugate eliminated ~60% of M-MDSCs, compared with ~8% cell death induced by daunorubicin alone. In contrast, G-MDSCs exhibited only minimal changes in viability (~18% versus ~20%, respectively). Notably, non-MDSC populations remained viable following treatments [39].

This discovery was particularly significant, expanding the relevance of AFP-based delivery to a major immunosuppressive cell's population.

AFP crosses the three cellular layers of the hemochorial placenta due to the AFPR found in the normal human placenta [35], and/or the neonatal Fc receptor (FcRn) [40], and returns with nutrients. AFP affinity for the essential PUFA DHA is 54 times stronger than that of albumin [41], and binds it even in a massive excess of albumin in the mother's blood (35–55 mg/mL) compared to AFP (~150 ng/mL). Interestingly, AFP: DHA complexes remain stable even during chromatography or electrophoretic procedures. The preferential binding of a ligand to AFP over albumin causes a significant enhancement of its fetal uptake. Thus, over 70% of estrone and estradiol injected into the rat's maternal circulation have been subsequently found to be associated with AFP in the fetus. Unlike AFP, rodent AFP binds strongly to these hormones, while artificial estrogens with low binding affinity do not concentrate in the rat fetus [42]. The AFP pocket can accommodate dioxin or diethylstilbestrol, providing a mechanistic explanation for their known embryotoxicity [43,44]. Nevertheless, as mutagens and carcinogens, these toxins cannot be used for cancer treatment. On the other hand, cyclophosphamide, doxorubicin, bleomycin, vincristine, and etoposide do not bind AFP strong enough. They may be given safely to a woman in need during any trimester of pregnancy, as they do not hurt the child or the mother [45].

Porcine AFP (pAFP) shares extensive amino acid and functional homology with AFP (Fig. 3). Unlike AFP, which has several glycosylated isoforms, mono-glycosylated pAFP serves both nutrient delivery and immunosuppression functions. PAFP binds ~2.6 moles of DHA and arachidonic acid per mole of protein [46]. Notably, pAFP transports nutrients and ligands across the six cellular layers of the epitheliochorial placenta, highlighting its exceptional transcytosis efficiency and evolutionary specialization for high-binding capacity ligand delivery [47].

AFP-bound cytotoxic compounds are selectively internalized by cancer cells via AFPR-mediated endocytosis. Electron microscopy has been used to follow AFP conjugates with horseradish peroxidase after specific endocytosis. AFP has been reported within coated pits of the plasma membrane, and tracked to vesicles, endosomes, and a tubular vesicular network localized in the Golgi-centrosphere region adjacent to the nucleus [48]. Once inside the cell, toxins can destroy organelles, and induce apoptosis, autodigestion or other regulated forms of cell death. For example, AFP delivers glycoside atractyloside (ATR) [49] into the AFPR⁺ cells, where ATR induces mitochondrion damage and consequent apoptosis, road of no return (Fig. 3) [50].

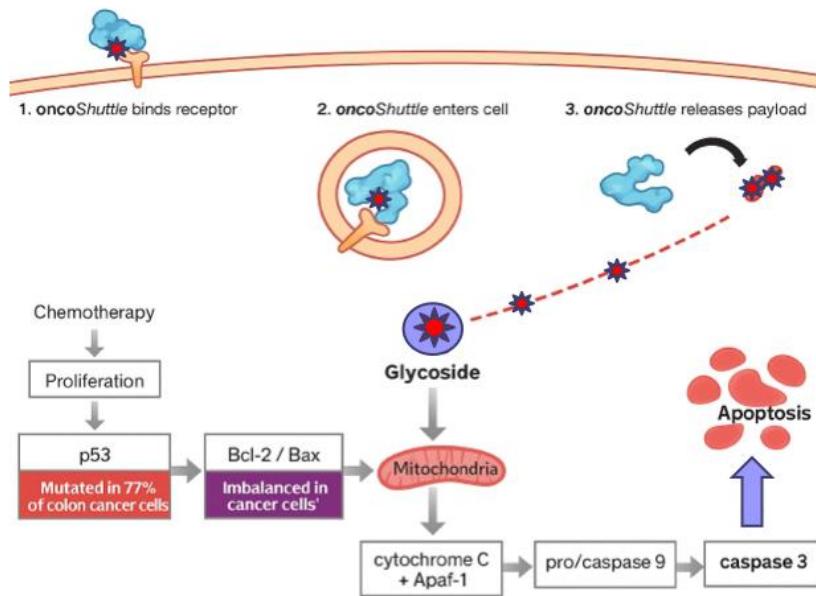


Figure 3. AFP specifically delivers glycoside atractyloside to AFPR⁺ cancer cells. Glycoside targets mitochondria, inducing cell apoptosis undependable of p53 conditions.

3. AFP as an Immunomodulator

Physiological AFP concentrations—approximately 5–10 ng/mL in healthy adults and 10–150 ng/mL during pregnancy—help maintain immune tolerance. Moderately elevated AFP levels (>7 ng/mL) in otherwise healthy individuals have been associated with protective metabolic phenotypes, including reduced hepatic steatosis, myosteatosis, and sarcopenia [51]. AFP administration increased muscle strength and endurance in humans and mice; it enhanced the relative mass of immunotropic organs, improved survival at advanced age mice, and reduced their auto-aggressive behaviour [52,53]. The AFP effects on immune cells are summarized in the Table 1 [54–62].

Immune Cell Type / Process	AFP Effect	Functional Outcome	References
Monocytes	Downregulates major histocompatibility complex class II (MHC II) expression	Reduced antigen presentation capacity	[54]
Macrophages	Promotes polarization toward an M2-like phenotype	Immunosuppressive, pro-tumor macrophage profile	[55]
NK cells	Suppression	Decreased NK-mediated cytotoxicity	[56,58]
DCs	Inhibits DC function	Suppression of NK cell cytotoxicity	[57]
Human mononuclear leukocytes	Modulates differentiation and functional activity	Broad immunoregulatory effects	[59]
Tregs	Inhibition	Decreased number	[60]
T helper cells	Influences conversion of naïve T helpers into memory T cells	Modulation of adaptive immune responses	[61]

Immune Cell Type / Process	AFP Effect	Functional Outcome	References
MDSCs	Modulates differentiation and functional activity	Broad immunoregulatory effects	[62]

Table 1. The AFP effects on immune cells.

Fetal-derived AFP (4 µg/kg/day) produced complete clinical responses in inflammatory bowel disease (IBD), enabling mucosal healing and steroid administration reduction [52]. Recombinant not glycosylated AFP (rAFP) was used in patients with active rheumatoid arthritis [63]. Newer rAFP formulation (ACT-101) surpassed anti-tumor necrosis factor alpha antibodies in preclinical colitis models, improved symptoms in myasthenia gravis and IBD [64-66].

AFP transport nutrients, and modulate the immune response via immature myeloid cells. The AFP properties depend on its ligands [67]. Hence, MDSC is a “double-edged sword,” playing protective or pathological roles depending on AFP deliveries. This trio mediate immune protection in autoimmune diseases—including multiple sclerosis, rheumatoid arthritis, IBD—as well as in allergic conditions and organ transplantation. On the other hand, they promote the progression of cancers [68,69]. When bound to cytotoxic ligands, AFP becomes a targeted delivery system that addresses MDSCs and tumor cells, enabling a dual therapeutic effect: a comprehensive approach to cancer immunotherapy and direct cytotoxicity [70].

4. Targeting AFP-receptor-positive cells.

The pore-forming anti-fungal antibiotic amphotericin B (AmB) disrupts organelles' membranes, sparing membrane of the cell, leading this cell to autodigestion. Patients with stage IV malignancies, were infused with AFP (75–300 µg) which can bind AmB in the blood. Infusions frequently triggered acute-phase reactions—transient chills and fever. Notably, no signs of endotoxicity related to rapid tumor lysis were observed. By the end of treatment, three patients demonstrated 30–40% reductions in primary tumor mass and metastatic burden. Two patients with lung cancer experienced continued metastatic regression for up to three months post-therapy. A patient with cerebral metastases showed marked neurological improvement, including recovery of swallowing and hand mobility, along with resolution of pleural carcinomatosis. Pain abated in three patients and did not recur for up to four months. Three patients gained more than 5 kg, and one maintained a stable weight. Overall, AFP: AmB infusions produced objective clinical responses in six of eight treated patients [71,72].

5. MDSC and Cancer Immune Evasion

MDSCs is a small heterogeneous cell population of immature myeloid progenitors of granulocytes, macrophages, and dendritic cells (DCs) generated from a common hematopoietic stem cell [73,74]. MDSCs expand under both physiological and pathological conditions, including cancer, chronic inflammation, autoimmunity, bacterial, viral, and parasitic infections, sepsis, obesity, trauma, and psychological stress [75]. Currently, no unique markers or signalling pathways definitively identify MDSCs, possibly because these immature cells occupy a transitional stage within the continuum of suppressive myeloid cell differentiation [76,77].

MDSCs are the key immune suppression cells, above Tregs, they exert activity through multiple mechanisms inhibiting both innate and adaptive responses (Fig. 4) [78]. Their accumulation correlates with tumor progression, metastasis, and poor clinical outcomes [79].

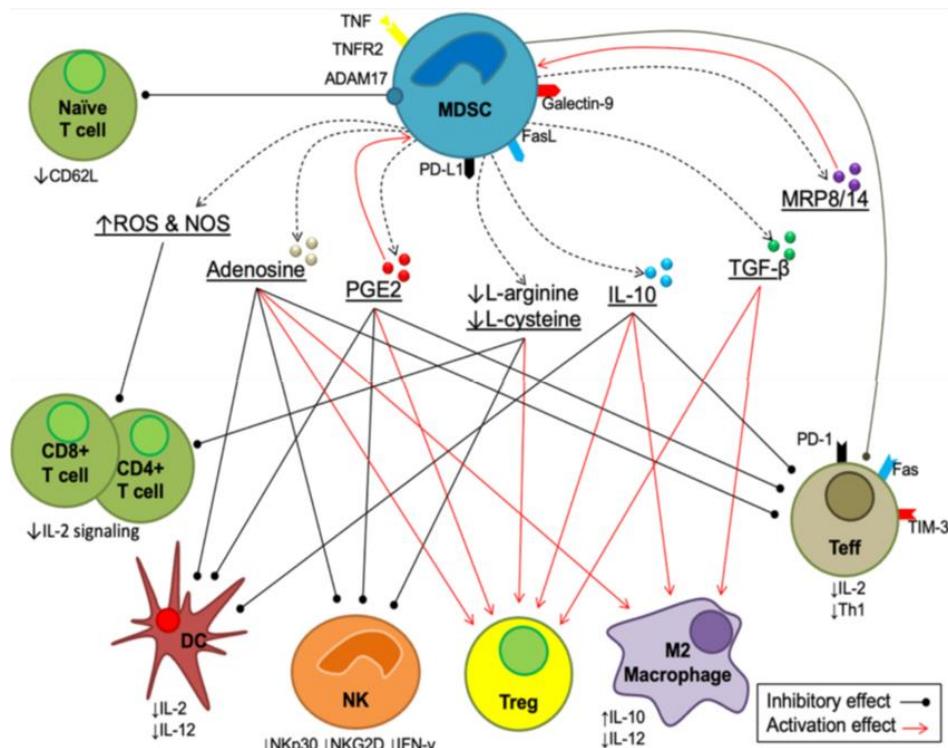


Figure 4. MDSC suppress the immune response by different mechanisms. Adapted from [78].

6. MDSC as Therapeutic Targets

The DC's and MDSC's suppressive function are stimulated by AFP and PUFAs [80,81]. MDSCs regulate maternal–fetal tolerance, they support implantation and fetal survival [5,6]. On the opposite, MDSC depletion in mice leads to pregnancy loss due to decidual NK cells activation [82,83]. Similarly, MDSC depletion in cancer by AFP: toxin unleashes NK cell and cytotoxic lymphocytes (CTLs) and leads to tumor elimination.

Cancer can be detected 3-5 years before clinical diagnosis [84,85], and the immune system could theoretically be “awakened” at any stage of tumor evolution by timely MDSC depletion. Like a pregnancy prevention, a cancer preventive/therapeutic MDSC-depletion vaccine can be applied to protect from cancer or improve patient outcomes.

MDSC targeting is a promising strategy in cancer immunotherapy [86-89]. Depleting MDSCs or blocking their suppressive pathways enables NK cells, macrophages, and CTLs to effectively recognize and eliminate malignant cells. Importantly, the absolute number of MDSCs—both systemically and within the PBMC compartment—is relatively small (~1%), meaning that effective MDSC-depleting therapies may require significantly lower doses compared to traditional cytotoxic chemotherapies.

MDSC and Treg levels are prognostic factors in cancers [90,91]. For example, in preoperative patients with MDSC levels >1.0% of total PBMCs, the overall survival of patients with stage IV breast cancer was significantly shorter compared with other disease stages, and was also significantly shorter compared with patients with MDSC levels <1.0% of total PBMCs [92].

Inoculation of MDSC from donor mice supported tumor growth in recipient animals [93]. In murine models, a single AFP dose increased MDSC numbers, reduced NK cell activity by ~20%, and accelerated tumor growth by ~60% [94]. Through MDSC, AFP indirectly

suppresses NK cell cytotoxicity and CTL responses while promoting Treg differentiation. AFP plays a pivotal role in MDSC biology, acting as a complementary and synergistic regulator of these cells. AFP and MDSC levels correlate with response to immune checkpoint inhibitors in cancers [95-97]. HCC cells produce tumor AFP (tAFP), which binds and transports nutrient to AFPR⁺ cells, promoting tumor growth and metastasis. The AFP and tAFP isoforms differ only at one glycosylation carbohydrate. tAFP inhibited differentiation of a monocyte-like DCs, which produced less of inflammatory mediators, and cancelled T cell responses. The tAFP immunosuppressive activity depends on impurities bound with tAFP in both tumor and nontumor cell lysates. tAFP serves as a delivery protein for small molecules, deteriorating DC differentiation and function [57,58]. The lipid uptake by AFP is known as a key of TME composition and immune response [80,81].

The high level of AFP accumulation was detected in the tumor tissue, reaching 6% of the injected amount per 1 g of tissue [98]. So, both AFP: PUFA and tAFP: small molecules suppress the immune response in cancer, while the opposite result can be achieved by AFP: toxin.

The replacement of PUFA with toxin for the AFP-mediated delivery was first introduced in 1983. PUFA–daunomycin conjugate bound tAFP and exhibited potent cytotoxicity against rat hepatoma cells both *in vitro* and *in vivo* [99]. On the other hand, toxins that directly bind tAFP or AFP can be administered separately or as pre-formed non-covalent complexes. Alternatively, AFP–toxin conjugates can be manufactured by chemical coupling [100,101]. Each strategy enables selective delivery to MDSCs and cancer cells.

Bioactive constituents from traditional medicines provide an additional means of modulating MDSCs activities [102]. As a result, many MDSC-dependent diseases may be sensitive to AFP-based immunotherapeutic intervention [103-110].

7. AFP–Toxin Immunotherapy Versus Conventional Chemotherapy

Chemotherapy Abraxane delivers albumin + 100 mg paclitaxel to cancer cells [111]. In contrast, sub-cytotoxic doses of AFP: toxins, that function primarily through immune reactivation rather than bulk tumor cell killing, selectively deplete MDSC, restore NK- and T-cell activity, and generate robust antitumor responses with minimal systemic toxicity.

The elimination of metastases observed during AFP: AmB infusions cannot be fully explained by direct cytotoxicity against AFPR⁺ cancer cells, given the extremely low doses of AFP (1–4 µg/kg) and AmB used (<17 mg) [71,72]. Several clinical observations support an immune-mediated mechanism:

1. Transient moncytopenia: Treatment briefly reduced circulating monocytes, while the peripheral blood lymphocyte-monocyte ratio (LMR) is closely associated with the prognosis of many tumors [112,113].
2. Infusion-associated fever and chills: These acute-phase reactions preceded tumor regression and resembled the mild cytokine release syndrome associated with rapid MDSC death and subsequent immune activation.
3. Durable responses after therapy cessation: Clinical improvements continued for up to three months after a one-month treatment course, indicating sustained immune-mediated tumor control rather than a short-lived direct cytotoxic effect.

4. New tactile awareness of metastases: Some patients reported sensation or discomfort in metastatic sites post-treatment, consistent with renewed immune recognition of previously immunologically “silent” lesions.

Together, these findings suggest that AFP: AmB infusions produce dual therapeutic benefits: (1) immunomodulation via MDSC depletion and immune reactivation, and (2) targeted chemotherapy delivery to cancer cells.

The superiority of AFP: toxin therapy is most apparent in immunocompetent systems. Nude mice require substantially higher doses than immunocompetent mice or human patients, underscoring that therapeutic benefit depends on an intact capacity for immune restoration.

Because of its low-dose, and immune-rebalancing mechanism, AFP: toxin therapy holds promise for prevention, early-stage cancers, metastatic disease, and for use in combination with other anticancer modalities.

8. Safety and Risks Considerations

Safety and risks of AFP: toxin cancer immunotherapy are summarized in the Table 2 [52, 114].

Aspect	Key Point	Safety Implication / Outcome	References / Notes
AFP dosing and physiological exposure	AFP administered at doses known to be safe; cancer incidence comparable between pregnant and non-pregnant women	Low intrinsic oncogenic risk	[52]
Clinical use of natural AFP	Natural AFP registered and used in Russia for autoimmune diseases and cancer (4 µg/kg/day)	Established safety and therapeutic efficacy	[52]
Recombinant AFP (rAFP)	Biosimilar rAFP (ACT-101) enables delivery of AFP-binding toxins	Expands therapeutic options with maintained safety	[114]
Toxin dose and binding	Sub-cytotoxic toxin doses non-covalently bound to AFP (2:1)	No damage to normal cells	
Toxin selection	Toxins are non-mutagenic and non-carcinogenic; act as direct apoptosis inducers	Reduced long-term cancer and genetic risks	Fig. 3
Drug repurposing	AFP-binding embryotoxic or teratogenic drugs may be repurposed	Facilitates clinical translation using registered drugs	
Target cell abundance	Regulatory immune cells are less abundant than effector cells	Lower drug doses required, improved treatment safety	
MDSC depletion in circulation	Depletion associated with fever and chills preceding tumor regression	Predictable, manageable immune-related effects	
MDSC localization	Bone marrow–resident MDSCs not exposed to AFP: toxin complexes	Limits excessive myeloid depletion	

Aspect	Key Point	Safety Implication / Outcome	References / Notes
Contraindications	Like pregnancy and breastfeeding	Clear and familiar clinical exclusion criteria	—
AFP-toxin chemical conjugates	Prevent toxin release outside cancer cells in acidic TME	Enhanced safety compared to non-covalent complexes	—
AFP growth-stimulating effects	Covalent conjugation eliminates AFP-mediated tumor stimulation	Improves therapeutic specificity	—
Preclinical efficacy (ACT-903)	AFP-maytansine conjugate induced complete tumor regression in COLO-205 xenografts	Strong anti-tumor efficacy	[114]
Systemic toxicity (ACT-903)	No systemic toxicity at 20–40 mg/kg/day	Favorable safety profile	[114]
Cancer models	Efficacy demonstrated in colorectal and ovarian cancer xenografts	Supports clinical advancement	[114]
Potential risks	Broad MDSC depletion and risk of autoimmunity	Requires careful immune monitoring	—
Risk mitigation	Adverse effects may be managed via treatment adjustments	Improves clinical controllability	—

Table 2. Safety and risks of AFP-toxin cancer immunotherapy.

9. Lessons from Traditional Fertility Control

Some traditional medicines historically used as contraceptives may also exert anticancer effects, reflecting shared reliance on immune-tolerance pathways in both pregnancy and tumor development. Natural agents can reduce or modulate MDSC populations and display antitumor activity that may be partially mediated through AFP-based transport to cancer and AFPR⁺ immune cells. Silphium—an extinct herbal contraceptive—has been speculated to influence HCC, where tAFP levels are elevated [19]. Artemisinin, used in antiquity as a contraceptive and now known for its potent antimalarial activity, also exhibits anticancer effects and downregulates MDSC [115]. Its affinity for AFP suggests that its modern oncologic potential may echo its historical role in reproductive modulation. Withaferin A, from *Withania somnifera* (Ashwagandha), similarly suppresses MDSC activity and induces apoptosis in tumor cells [116]. Most medical guidance recommends avoiding ashwagandha during pregnancy.

AFP-binding embryotoxic and teratogenic compounds may be used for cancer therapy. In combination with AFP or pAFP, agents such as warfarin [117], retinoids [118,119], glycyrrhizic acid [120], thalidomide, isotretinoin, etc., may prevent or treat cancer.

Many women benefit from oral contraceptives that can reduce women's risk with some cancers [121,122]. For example, pregnancy-preventing drug mifepristone (RU486) inhibits embryonic implantation and modulates macrophage-regulated NK cell activity, enhancing their cytotoxicity and migration in a dose-dependent manner [123]. Mifepristone

induces apoptosis through mitochondrial protein imbalance, and has shown promise in treating various cancers, including metastatic lung cancer resistant to immune checkpoint inhibitors [124]. A pregnancy prevention mechanism can be not only blocking the hormone progesterone, but also both the decrease of MDSC activity and the toxin direct action on embryo cells. Hence, like oral mifepristone prevents pregnancy, AFP: mifepristone can possibly prevent cancer.

AFP increases ligand stability, reducing renal clearance, and prolonging circulating half-life. Such AFP-bound compounds retain selective uptake by AFPR⁺ cells and can be administered orally, leveraging gut-associated lymphoid tissue (GALT) for systemic immune modulation.

10. AFP Potentiates Traditional Medicine–Derived Compounds in Immunotherapy

Natural compounds and functional foods are often regarded as safer alternatives to synthetic drugs. Many traditional medicines contain ingredients that have demonstrated immunotherapeutic potential, that selectively “feed” key regulatory immune cells thereby shaping the immune response [125]. As of late 2024, 125 natural products and their derivatives were in clinical trials or the registration phase [126]. Herbal agents can influence MDSC through several mechanisms, including blocking AFP–MDSC interactions, reducing MDSC suppressive activity, altering the ligand carried by AFP, or directly depleting MDSCs. MDSCs are “here, there, and everywhere”, acting not only in pregnancy and cancer [127]. Consequently, AFP also participate in immune balance regulation. The interaction among MDSCs, AFP, and AFP-bound ligands forms an immunoregulatory trio that operates in both physiological and pathological contexts [128].

In oncology, robust antitumor responses can be achieved by administering sufficient AFP to act as a shuttle together with moderate toxins, by delivering preformed AFP: toxin complexes, or AFP-toxin chemical conjugates.

The moderate anticancer agents genistein, curcumin, artemisinin, and resveratrol suspensions in oil show improved absorption and enhanced cytotoxicity [129]. These agents can also bind tAFP or AFP. Through these binding botanical compounds are targeted to MDSCs and become immunomodulators. Thus, curcumin suppresses MDSC expansion and promotes immune activation; genistein, resveratrol, and artemisinin exhibit similar effects. Curcumin and genistein bound to rAFP, demonstrate elevated antitumor activity [130].

1'-S-1'-Acetoxychavicol acetate (ACA) from *Alpinia* species has anticancer properties [131]. When complexed with AFP at a 1:1–3 ratio, ACA demonstrated potent antitumor activity [132]. As a food, ACA may possibly support immunity through AFP-mediated shuttling during lifetime.

At a conventional 15 mg/kg dose, paclitaxel from *Taxus* species has demonstrated direct cytostatic or cytotoxic effects on melanoma cells. In contrast, paclitaxel in low non-cytotoxic concentrations (1 mg/kg, weekly × 3) significantly decreased the accumulation and immunosuppressive activities of tumor infiltrating MDSCs. It has also reversed immunosuppression and chronic inflammation. In low non-cytotoxic doses, paclitaxel is unable to directly suppress tumor cell proliferation, induce apoptosis, or alter the bone marrow hematopoiesis, but it modulates the functions of MDSCs in primary skin tumors and lymphoid organs, affect the production of mediators of chronic inflammation and T cell activities in the TME, prolong mice survival, and reduce the melanoma burden. The low non-cytotoxic paclitaxel doses have also been used for enhancing the efficacy of accompanying anti-cancer therapies [133]. So, immunotherapeutic impact outweighs paclitaxel’s cytotoxic one. When complexed with AFP at a 1:2 molar ratio, paclitaxel becomes water-soluble, gains an extended

half-life, and selectively targets the AFPR⁺ cells. The AFP: paclitaxel complex (ACT-901) improves survival and reduces toxicity compared to high-dose paclitaxel [134].

Thapsigargin (TG), a highly potent toxin from *Thapsia gargarica*, is unsafe when administered systemically [135], but rAFP (ACT-101): TG at a 1:2 ratio (ACT-902) induces ~32% MDSC death *in vitro* (versus 5% in controls) and, at 0.15 mg/kg, produced complete tumor regression in five of six nude mice within seven days [114]. Notably, nude mice are deficient in T cells, which play a critical role in the immune response. Consequently, immunocompetent mice are expected to demonstrate improved outcomes at lower doses. Oral pAFP: TG formulations have also demonstrated strong anticancer activity in mice [72].

Rodenticide rotenone, a botanical mitochondrial inhibitor (IC₅₀: 0.8–4 nM), is moderately toxic in humans at high doses (oral LD₅₀ ~300–500 mg/kg). Gavage with pAFP: rotenone has shown significant inhibition of tumor growth in mice [72].

Overall, the potency of pAFP: toxin complexes correlate with toxin strength: TG, ATR, rotenone > betulinic acid [136], ajoene [137]> tocotrienol, vitamin D₃ [138], while adjunctive betulinic acid or ajoene further improve therapeutic outcomes [72].

11. Oral Delivery

“Let food be thy medicine, and let medicine be thy food.” (Hippocrates)

The poor GI absorption, and low bioavailability usually prevents the oral protein-based drugs administration [139]. Nevertheless, AFP or pAFP are candidates for oral formulations [140].

The FcRn-mediated transcytosis through placenta and GI enterocytes is known for immunoglobulin G: antigen and albumin: ligand complexes [141]. AFP: ligand also crosses several cell layers of placenta, and AFP has an even stronger binding affinity to FcRn [142]. That possibly allows AFP: ligand complexes to reach FcRn⁺ and/or AFPR⁺ regulatory immune cells in the mucosa and regional lymph nodes.

At 5–7 µM (350–490 µg/mL), full-length AFP induce apoptosis in HCC cells. The main role was attributed the AFP molecule, but not to its ligands [143].

A peptide mimicking the anti-estrogenic, anti-breast-cancer active site of AFP was isolated and developed into a nine–amino acid cyclic peptide (~1.2 kDa). This peptide inhibited the development and growth of mammary tumors in rodent models. In non-human primates, intravenous (IV) administration at 4 mg/kg achieved peak plasma concentrations of ~13 µg/mL. This exposure exceeds, on a molar basis, the concentrations of full-length AFP (70 kDa) reported to induce apoptosis (350–490 µg/mL), reflecting the substantially lower molecular weight of the peptide (70 kDa vs. 1.2 kDa). So, the peptide, like a full-length AFP, can induce apoptosis in cancer cells. An oral peptide administration resulted in minimal systemic exposure, with plasma levels of approximately 0.03 µg/mL, corresponding to an estimated oral bioavailability of ~0.23%. AFP peptide at concentrations ≥0.1 µg/mL was sufficient to inhibit tumor xenografts in mice [144].

Nevertheless, AFP-toxin non-covalent complexes or conjugates are more potent than full-length AFP or AFP peptides, as they additionally deliver cytotoxins (e.g., 1:5.9 molar ratio in ACT-903) [100,101]. Moreover, partial MDSC depletion is sufficient to “tip” the immune system toward activation, enabling endogenous effector cells to eliminate tumors.

Glycoside ATR (Fig. 3), the major bioactive constituent of *Callilepis laureola*—used in Zulu medicine as a decoction for gastrointestinal and reproductive disorders [145], that

allows to test it as an oral medicine in cancer too. The oil-based ATR formulations have demonstrated antitumor activity in mouse models [146]. In high doses, ATR inhibits the development, as well as the metastasis, of colon cancer, and is under active investigation as a TME modulator [49]. Aimpila is a 1:2 molar complex of pAFP: ATR, it is an example of an oral cancer immunotherapy. In Ca-755 breast adenocarcinoma models, gavage of mice with Aimpila significantly extended survival without observable toxicity [72].

Clinical observations are consistent with preclinical data supporting the efficacy and safety of AFP: ATR therapy. Aimpila delivers 0.012 mg ATR/day—orders of magnitude below known toxicity thresholds, given that the oral LD₅₀ of ATR in rodents ranges from 25 to 100 mg/kg. In an initial study of 16 patients with advanced solid tumors (colon, stomach, breast, and liver), administration of two Aimpila capsules/day (containing 0.3 mg pAFP and 0.006 mg ATR) for one month resulted in approximately 20% improvements in Karnofsky indexes. No adverse events were reported [72].

12 patients with liver-metastatic colorectal cancer (mCRC) received two Aimpila capsules per day for two months. Computer tomography before and after eight weeks of therapy showed responses in six of the twelve patients. Two achieved complete disappearance of small metastases, one exhibited a 73% reduction in metastatic burden, and three achieved disease stabilization. Tumor-growth inhibition and regression occurred without notable toxicity. Two of the responders had previously undergone chemotherapy, suggesting that Aimpila may help overcome multi-drug resistance (Fig.3). Serum carcinoembryonic antigen levels declined from 816 to 268 ng/mL in a patient with complete response, and from 1,243 to 638 ng/mL in a patient with stable disease. Two patients survived more than five years, exceeding the ~9-month median survival for mCRC [147,148].

A woman with stage IV ovarian cancer received 6.0 mg pAFP + 0.12 mg ATR daily and survived more than 10 years post-diagnosis [72].

AFP fragments have only ~0.23% oral bioavailability [144]. Hence, a dose of 0.6 mg pAFP in Aimpila is ~1.38 ng/mL in plasma, that is below cytotoxic AFP or AFP fragments concentrations (350–490 µg/mL, and ≥0.1 µg/mL accordingly). Nevertheless, therapeutic responses are consistently observed in both clinical and preclinical settings. This indicates that oral Aimpila act primarily through immunological modulation rather than direct systemic cytotoxicity. Supporting this, gavage of a pAFP: rotenone (1:2) complex in mice produced no detectable plasma levels of either component yet significantly suppressed tumor growth [72]. These findings suggest that activation of GALT and selective modulation or depletion of MDSCs and related immune populations is the principal mechanism of action.

Collectively, these data support a model in which oral AFP: ligand formulations act primarily as immune modulators. Their effects can be due to FcRn-mediated transcytosis and lymphatic trafficking and targeting of AFPR⁺ immune cells. Rather than relying on plasma drug levels or direct tumor exposure, these complexes modulate systemic immunity from the intestinal immune system. Compared to injections, oral administration is more convenient and safer for patients, making AFP-toxin oral formulations an attractive cancer immunotherapy.

12. Clinical outcomes in cancer patients

Combining AFP with traditional medicine compounds offer a new way for cancer immunotherapy with minimal adverse effects. Human rAFP (ACT-101) is characterized clinically [114]. Pharmacokinetic advantages of intravenous (IV) or subcutaneous administration are improved bioavailability and prolonged circulation half-life. Unlike conjugates, AFP-shuttle can deliver dozens of toxins during its 3-5 days of half-life circulation. AFP: toxin therapy may complement existing treatments due to its reduced toxicity.

Because MDSCs and many solid and hematologic malignancies are AFPR⁺, the preselection of patients for AFPR expression is unnecessary. Through coordinated depletion of MDSC and activation of effector immune cells, AFP: toxin therapies may restore immune competence and promote the memory. Summary of clinical outcomes in cancer patients are presented in Table 3.

Patients	Treatment	Outcome	Ref.
51 cancer pts	AFP 4 µg/kg/day	Anti-cancer effect on differentiated tumors	[52, p.273-287]
8 cancer pts	AFP 4 µg/kg + AmB	6/8 responses, 3 pts with 30-40% tumor inhibition/regression	[71,72]
16 pts with advanced solid tumors	pAFP 0.6 mg + ATR 0.012 mg/day (oral)	~20% ↑KPI	[72]
12 mCRC pts	pAFP 0.6 mg + ATR 0.012 mg/day (oral)	6/12 responses; tumor inhibition/regression; 2 OS > 5 yrs	[147,148]
1 stage IV ovarian cancer pt	pAFP 6 mg + ATR 0.12 mg/day (oral)	OS > 10 yrs	[72]

Table 3. Summary of clinical outcomes in cancer patients treated with AFP, pAFP, and AFP-toxin combinations. AFP, alpha-fetoprotein; pAFP, porcine AFP; ATR, atractyloside; AmB, amphotericin B; mCRC, metastatic colorectal cancer; KPI, Karnofsky Performance Index; OS, overall survival.

AFP: toxin complexes represent a novel immunotherapeutic approach. Studies on efficacy, safety, and ligand optimization will be essential to translate these discoveries into effective therapeutic and preventive tools.

13. Conclusions

AFP naturally delivers nutrients to immature AFPR⁺ cells, including a small population of immunosuppressive MDSCs that orchestrate immune tolerance during pregnancy, cancer, and other conditions. The MDSCs, AFP, and AFP-bound ligands interaction generate a dynamic immune response “here, there, and everywhere”. Nutrients can stimulate MDSCs, thereby suppressing the activated immune system, while toxins with AFP selectively destroy MDSCs, providing a novel cancer immunotherapy that reactivate NK cells, macrophages, and cytotoxic T lymphocytes. Preliminary experiments have shown that AFP-toxin conjugates and non-covalent complexes combine selective cytotoxicity against MDSCs and malignant cells. The combined effects enhance natural antitumor immune response and possibly restore memory. The low doses of apoptosis-inducing toxins can eliminate targeted cells without generating pro-inflammatory byproducts. AFP: toxin complexes and conjugates are not personalized, they can be proposed as prophylactic agents and combined with other treatments. rAFP platforms like ACT-101 may streamline and accelerate clinical development of AFP-binding already-registered cytotoxic drugs, but they do not eliminate the need for clinical trials. Harnessing AFP’s natural biological functions alongside the pharmacological potency of traditional medicine active ingredients provide a biologically based, low-toxicity, and wide immunotherapy platform.

AFP: toxin non-covalent complexes or covalent conjugates injectable or oral formulations are mechanistically understood, highly efficacious, low in systemic toxicity, cost-effective, and patient-friendly. This approach offers a promising avenue toward durable cancer control and restoration of immune competence.

Abbreviations

AFP Alpha-fetoprotein
pAFP Porcine AFP
rAFP Recombinant AFP
tAFP tumor-derived AFP
AFPR AFP receptor
AmB amphotericin B
ATR Attractyloside
mCRC metastatic colorectal cancer
CTL Cytotoxic T lymphocyte
DC Dendritic cell
DHA Docosahexaenoic acid
FcRn Neonatal Fc receptor
GALT Gut-associated lymphoid tissue
GI Gastrointestinal
KPI Karnofsky Performance Index
HCC Hepatocellular carcinoma
IBD Inflammatory bowel disease
IV Intravenous
LD₅₀ Median lethal dose
MDSC Myeloid-derived suppressor cell
NK Natural Killer
OS Overall survival
p53 Tumor protein 53
PBMC Peripheral blood mononuclear cells
PUFA Polyunsaturated fatty acid
TG Thapsigargin
Treg Regulatory T cell
TME Tumor microenvironment

Author Contributions:

The author is solely responsible for conceptualization, investigation, writing – original draft, writing – review and editing, and visualization of the manuscript. The author has read and agreed to the published version of the manuscript.

Conflicts of Interest

The author declares no conflicts of interest.

Funding

No external funding was received for this research.

Acknowledgement: ChatGPT was used to improve grammar and style, and create the tables.

References

1. Abelev GI. Alpha-Fetoprotein in Ontogenesis and Its Association with Malignant Tumors. *Adv Can Res* 1971;14: 295–358. doi.org/10.1016/S0065-230X(08)60523-0.
2. Murgita RA. The immunosuppressive role of alpha-fetoprotein during pregnancy. *Scand J Immunol* 1976;5(9):1003-14. doi: 10.1111/j.1365-3083.1976.tb03052.x.
3. Qi Y, Zhang L, Liu Y, Li Y, Liu Y, Zhang Z. Targeted modulation of myeloid-derived suppressor cells in the tumor microenvironment: Implications for cancer therapy. *Biomed Pharma* 2024; 180, 117590. doi.org/10.1016/j.biopha.2024.117590
4. Cassetta L, Bruderek K, Skrzeczynska-Moncznik J, Osiecka O, Hu X, Rundgren IM, et al. Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation. *J Immunother Cancer* 2020;8(2):e001223. doi: 10.1136/jitc-2020-001223.
5. Ostrand-Rosenberg S, Sinha P, Figley C, Long R, Park D, Carter D, et al. Frontline Science: Myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice. *J Leukoc Biol* 2017;101(5):1091-1101. doi: 10.1189/jlb.1HI1016-306RR.
6. Ahmadi M, Mohammadi M, Ali-Hassanzadeh M, Zare M, Gharesi-Fard B. MDSCs in Pregnancy: Critical Players for a Balanced Immune System at the Feto-Maternal Interface. *Cell Immunol* 2019;346: 103990. doi.org/10.1016/j.cellimm.2019.103990
7. Toghraie FS, Bayat M, Hosseini MS, Ramezani A. Tumor-infiltrating myeloid cells; mechanisms, functional significance, and targeting in cancer therapy. *Cell Oncol* 2025; doi.org/10.1007/s13402-025-01051-y
8. Jewett A, Kos J, Kaur K, Safaei T, Sutanto C, Chen W, et al. Natural Killer Cells: Diverse Functions in Tumor Immunity and Defects in Pre-neoplastic and Neoplastic Stages of Tumorigenesis. *Mol Ther Oncolytics* 2019;16:41-52. doi.org/10.1016/j.omto.2019.11.002
9. Sendera R, Weissb Y, Navon Y, Milo I, Azulay N, Keren L, et al. The total mass, number, and distribution of immune cells in the human body. *PNAS* 2023;120 (44) e2308511120. doi.org/10.1073/pnas.2308511120
10. Galle PR, Foerster F, Kudo M, Chan SL, Llovet J M, Qin S, et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. *Liver Int* 2019; 39(12), 2214–2229. doi: 10.1111/liv.14223.

11. Gvajaia A, Imeh M, Raza A. An Interesting Case of Alpha-Fetoprotein (AFP)-Producing Pancreaticoduodenal Tumor. *Cureus* 2024;16(4): e59384. doi:10.7759/cureus.59384
12. Govallo VI. Immunology of Pregnancy and Cancer. Commack, N.Y: Nova Science Publishers; 1993:1-310. ISBN-10: 1560720964.
13. Torres JM, Laborda J, Naval J, Darracq N, Calvo M, Mishal Z, et al. Expression of Alpha-Fetoprotein Receptors by Human T-Lymphocytes during Blastic Transformation. *Mol Immunol* 1989;26(9):851–57. doi: 10.1016/0161-5890(89)90141-7.
14. Suzuki Y, Zeng CQ, Alpert E. Isolation and partial characterization of a specific alpha-fetoprotein receptor on human monocytes. *J Clin Invest* 1992;90 (4), 1530–1536. DOI: 10.1172/JCI116021
15. Atemezem A, Mbemba E, Marfaing R, Vaysse J, Pontet M, Saffar L, et al. Human AFP binds to primary macrophages. *Biochem Biophys Res Commun* 2002; 296:507–514. doi: 10.1016/S0006-291X(02)00909-9.
16. Sedky HA, Youssef SR, Gamal DA, Houssein HF, Elsalakawy WA. First report of the unique expression of RECAF (receptor for alfa fetoprotein) in adult B-NHL/CLL patients. *BR* 2020; 55:253-261. doi.org/10.5045/br.2020.2020070
17. Lin B, Wang Q, Liu K, Dong X, Zhu M, Li M. Alpha-Fetoprotein Binding Mucin and Scavenger Receptors: An Available Bio-Target for Treating Cancer. *Front Oncol* 2021;11:625936. doi: 10.3389/fonc.2021.625936
18. Ucdal M, Yazarkan Y, Sonmez G, Celikci B, Balaban Y. Alpha-fetoprotein: A Multifaceted Player in Cancer Biology. *Euroasian J Hepatogastroenterol* 2025;15(1):72-82. doi: 10.5005/jp-journals-10018-1458
19. Pak VN. Alpha-Fetoprotein: A Revolutionary Anti-Cancer Drug. *Med Res Arch* 2023; [S.I.], 11(7):1-18. ISSN 2375-1924. doi.org/10.18103/mra.v11i7.1.4125
20. Meyiah A, Avula SK, Al-Harrasi A, Elkord E. Effects of 1H-1,2,3-Triazole Derivatives of 3-O-Acetyl-11-Keto-Beta-Boswellic Acid from *Boswellia sacra* Resin on T-Cell Proliferation and Activation. *Pharmaceuticals* 2024; 17(12):1650. doi.org/10.3390/ph17121650
21. Abbasi HA, Atif M, Anjum MN, Ahmed J, Wahab A, Shah SAA. Potential of Plant Bioactive Compounds for the Treatment of Cancer: Bioactive Compounds for the Treatment of Cancer. *Futur Biotech* 2025; 5(2), 16-27. doi.org/10.54393/fbt.v5i2.177
22. Mizejewski GJ, ed. *Biological Activities of Alpha-Fetoprotein*. Vol. I and II. Boca Raton, FL: CRC Press, Inc.; 1987.
23. Terentiev AA, Moldogazieva NT. Alpha-fetoprotein: a renaissance. *Tumour Biol*. 2013;34(4):2075-91. doi: 10.1007/s13277-013-0904-y
24. Lakhi N, Moretti M. *Alpha-Fetoprotein: Functions and Clinical Application. Protein Biochemistry, Synthesis, Structure and Cellular Functions*. Hauppauge, New York: Nova Science Publisher's, Inc. (2016) 420 p. ISBN: 978-1-63484-875-6
25. Lin B, Dong X, Wang Q, Li W, Zhu M, Li M. AFP-Inhibiting Fragments for Drug Delivery: The Promise and Challenges of Targeting Therapeutics to Cancers. *Front Cell Dev Biol* 2021;9:635476. doi: 10.3389/fcell.2021.635476

26. Gulevskyy OK, Akhatova YuS. Structural and functional properties of alpha-fetoprotein and the possibilities of its clinical applications. *Biotech acta* 2021; 14(1):25-37. doi.org/10.15407/biotech14.01.025

27. Główka-Ciemny J, Szymański M, Kuszerska A, Malewski Z, von Kaisenberg C, Kocylowski R. The Role of Alpha- Fetoprotein (AFP) in Contemporary Oncology: The Path from a Diagnostic Biomarker to an Anticancer Drug. *Int J Mol Sci* 2023; 24(3):2539. doi.org/10.3390/ijms24032539

28. Munson PV, Adamik J, Butterfield LH. Immunomodulatory impact of α -fetoprotein. *Trends Immunol* 2022;43(6):238-448. doi.org/10.1016/j.it.2022.04.001

29. Adigun OO, Yarrarapu SNS, Zubair M, Khetarpal S. Alpha Fetoprotein. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2023) Jan 18. PMID: 28613501.

30. Kim H, Jang M, Kim E. Exploring the Multifunctional Role of Alpha-Fetoprotein in Cancer Progression: Implications for Targeted Therapy in Hepatocellular Carcinoma and Beyond. *Int J Mol Sci* 2025; 26(10):4863. doi.org/10.3390/ijms26104863 4.1.1.

31. Liu K, Wu C, Zhu M, Xu J, Lin B, Lin H, et al. Structural characteristics of alpha-fetoprotein, including N-glycosylation, metal ion and fatty acid binding sites. *Commun Biol* 2024;7, 505. doi.org/10.1038/s42003-024-06219-0

32. Vallette G, Vranckx R, Martin M-E, Benassayag C, Nunez EA. Conformational changes in rodent and human α -fetoprotein: influence of fatty acids. *Biochim Biophys Acta*. 1989;997(3):302–12. doi: 10.1016/0167-4838(89)90201-X.

33. Uversky VN, Narizhneva NV. Effect of natural ligands on the structural properties and conformational stability of proteins. *Biochemistry (Moscow)* 1998;63(4):420–33. PMID: 9556525.

34. Dudich IV, Semenkova LN, Tatulov E, Korpela T, Dudich E. Improved delivery of poorly water-soluble drugs with alpha-fetoprotein stabilized with metal ions. World Intellectual Property Organization WO2015075296A1, 2015.
<https://patents.google.com/patent/WO2015075296A1/en>

35. Newby D, Dalglish G, Lyall F, Aitken DA. Alphafetoprotein and Alphafetoprotein Receptor Expression in the Normal Human Placenta at Term. *Placenta* 2005;26 (2–3):190–200. doi.org/10.1016/j.placenta.2004.06.005

36. Esteban C, Geuskens M, Uriel J. Activation of an Alpha-Fetoprotein (AFP)/Receptor Autocrine Loop in HT-29 Human Colon Carcinoma Cells. *Int J Cancer* 1991;49(3):425–430. doi.org/10.1002/ijc.2910490320.

37. Torres JM, Geuskens M, Uriel J. Receptor-mediated endocytosis and recycling of alpha-fetoprotein in human B-lymphoma and T-leukemia cells. *Int J Cancer* 1991; 47:110–117. doi: 10.1002/ijc.2910470120.

38. Esteban C, Trojan J, Macho A, Mishal Z, Lafarge-Frayssinet C, Uriel J. Activation of an Alpha-Fetoprotein/Receptor Pathway in Human Normal and Malignant Peripheral Blood Mononuclear Cells. *Leukemia* 1993;7(11):1807–16. PMID: 7544757.

39. Belyaev NN, Abdolla N, Perfilieva YV, Ostapchuk YO, Krasnoshtanov VK, Kali A, et al. Daunorubicin conjugated with alpha-fetoprotein selectively eliminates myeloid-derived

suppressor cells (MDSCs) and inhibits experimental tumor growth. *Cancer Immunol Immunother* 2018; 67:101–111. doi: 10.1007/s00262-017-2067-y

40. Pyzik M, Rath T, Lencer WI, Baker K, Blumberg RS. FcRn: The Architect Behind the Immune and Nonimmune Functions of IgG and Albumin. *J Immunol* (Baltimore, Md.: 1950). 2015; 194 (10): 4595–4603. doi.org/10.4049/jimmunol.1403014

41. Anel A, Calvo M, Naval J, Iturrealde M, Alava MA, Piñeiro A. Interaction of Rat α -Fetoprotein and Albumin with Polyunsaturated and Other Fatty Acids: Determination of Apparent Association Constants. *FEBS Lett* 1989;250 (1): 22–24. doi.org/10.1016/0014-5793(89)80676-3

42. Le Guern A, Benassayag C, Nunez EA. Role of Alpha-1-Fetoprotein in the Transplacental Transfer of Natural and Synthetic Estrogens in the Rat. *Devel Pharma Ther* 1982;4 (S1): 79–87. doi.org/10.1159/000457361

43. Sotnichenko AI, Severin SE, Posypanova GA, Feldman NB, Grigor'ev MI, Severin ES, et al. Water-Soluble 2,3,7,8- Tetrachlorodibenzo-p-Dioxin Complex with Human Alpha-Fetoprotein: Properties, Toxicity in Vivo and Antitumor Activity in Vitro. *FEBS Lett* 1999; 450 (1–2): 49–51. doi.org/10.1016/s0014-5793(99)00440-8

44. Terentiev AA, Moldogazieva NT, Levtsova OV, Maximenko DM, Borozdenko DA, Shaitan KV. Modeling of Three-Dimensional Structure of Human Alpha-Fetoprotein Complexed with Diethylstilbestrol: Docking and Molecular Dynamics Simulation Study. *J Bioinf Comput Biol*. 2012;10(2):1241012. doi: 10.1142/S0219720012410120

45. Mayer EL. An Oncologist's Perspective on the Clinical Use of Teratogenic Products. Dana-Farber Cancer Institute, Boston, MA, USA. 2012.

www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/DrugSafetyandRiskManagementAdvisoryCommittee/UCM333370.pdf.

46. Carlsson RN, Ingvarsson BI, Karlsson BW. Isolation and Characterization of Alpha-Foetoprotein from Foetal Pigs. *Int J Biochem* 1976;7: 13–20. doi.org/10.1016/0020-711X(76)90032-X.

47. Almeida FRCL, Alvarenga Dias ALN. Pregnancy in pigs: the journey of an early life. *Dom Anim Endocr* 2022;78, 106656. doi.org/10.1016/j.domanied.2021.106656

48. Geuskens M, Torres JM, Esteban C, Uriel J. Morphological Characterization of the Pathway of Endocytosis and Intracellular Processing of Transferrin and Alpha-Fetoprotein in Human T Lymphocytes Stimulated with Phytohemagglutinin (PHA). *Eur J Cell Biol* 1989;50 (2): 418–27. <https://pubmed.ncbi.nlm.nih.gov/2483377/>.

49. Qi L, Song F, Han Y, Zhang Y, Ding Y. Atractyloside targets cancer-associated fibroblasts and inhibits the metastasis of colon cancer. *Ann Transl Med* 2020;8(21):1443. doi: 10.21037/atm-20-1531.

50. An L, Han Y, Jiao S, Zhou Z. Road of no return - loss of TP53 paves a defined evolution path from gastric preneoplasia-to-cancer. *Cancer Biol Med* 2024;20(12):885–90. doi: 10.20892/j.issn.2095-3941.2023.0435.

51. Jang S, Choi GH, Chang W, Jang ES, Kim J-W, Jeong S-H. Elevated alpha-fetoprotein in asymptomatic adults: Clinical features, outcome, and association with body composition. *PLoS ONE* 2022;17(7):e0271407. doi.org/10.1371/journal.pone.0271407

52. Chereshnev VA, Rodionov SYu, Sherkasov VA, Malutina NN, Orlov OA. Alpha-fetoprotein. [In Russian] Ekaterinburg YuD RAS; 2004:376 pages.
https://www.biomedservice.ru/preparat/libr_alfetin3.pdf

53. Krut'ko VN, Dontsov VI, Khalyavkin AV. Effect of Alpha-Fetoprotein on Lifespan of Old Mice. *Biochemistry (Mosc)*. 2016;81(12):1477-1479. doi: 10.1134/S0006297916120087.

54. Laan-Pütsep K, Wigzell H, Cotran P, Gidlund M. Human α -fetoprotein (AFP) causes a selective down regulation of monocyte MHC class II molecules without altering other induced or noninduced monocyte markers or functions in moncytoid cell lines. *Cell Immunol* 1991;133(2):506–1810. doi.org/10.1016/0008-8749(91)90122-R

55. Zhang M, Liu K, Zhang Q, Xu J, Liu J, Lin H, et al. Alpha fetoprotein promotes polarization of macrophages towards M2-like phenotype and inhibits macrophages to phagocytize hepatoma cells. *Front Immunol* 2023;14:1081572. doi:10.3389/fimmu.2023.1081572

56. Yamada A, Hayami M. Suppression of natural killer cell activity by chicken alpha-fetoprotein in Japanese quails. *J Natl Can Inst* 1983;70(4):735–738. PMID: 6187964.

57. Pardee AD, Shi J, Butterfield LH. Tumor-Derived α -Fetoprotein Impairs the Differentiation and T Cell Stimulatory Activity of Human Dendritic Cells. *J Immunol (Baltimore, Md.: 1950)* 2014;193 (11): 5723–32. doi.org/10.4049/jimmunol.1400725.

58. Vujanovic L, Stahl EC, Pardee AD, Geller DA, Tsung A, Watkins SC, et al. Tumor-Derived α -Fetoprotein Directly Drives Human Natural Killer–Cell Activation and Subsequent Cell Death. *Cancer Immunol Res* 2017; 5 (6): 493–502. doi.org/10.1158/2326-6066.CIR-16-0216

59. Lebedinskaya OV, Velizheva NP, Donenko FV, Chereshnev VA, Rodionov SYu, Akhmatova NK, et al. Effect of “profetal” on differentiation and functional activity of human mononuclear leukocytes. *Bull Exp Biol Med* 2006;141, 536–543. doi.org/10.1007/s10517-006-0215-z108.

60. Chereshnev VA, Timanova VP, Zamorina SA, Bochkova MS, Khramtsov PV, Kropaneva MD, et al. Role of α -Fetoprotein in Differentiation of Regulatory T Lymphocytes. *Dokl Biol Sci* 2017;477(1):248–51. doi: 10.1134/S0012496617060084.

61. Zamorina SA, Timanova VP, Bochkova MS, Khramtsov PV, Fomicheva KA, Rayev, MB, et al. α -Fetoprotein Influence on the Conversion of Naïve T-Helpers into Memory T-Cell Effector Subpopulations. *Dokl Biol Sci* 2018; 482(1), 210–213. doi.org/10.1134/S0012496618050113.

62. Shardina KY, Zamorina SA, Timanova VP, Bochkova MS, Uzhviyuk SV, Chereshnev VA. Alpha-fetoprotein as a factor of differentiation and functional activity of myeloid-derived suppressor cells. *Bull Exp Biol Med* 2023; 175:535–543. doi: 10.1007/s10517-023-05901-3.

63. Pollard LC, Murray J, Moody M, Stewart EJ, Choy EHS. A Randomised, Double-Blind, Placebo-Controlled Trial of a Recombinant Version of Human Alpha-Fetoprotein (MM-093) in Patients with Active Rheumatoid Arthritis. *Ann Rheum Dis* 2007;66 (5): 687–89. doi.org/10.1136/ard.2006.059436

64. Desreumaux P, Rousseaux C, Dubuquoy C. P1280 - Anti-Inflammatory Effect of Recombinant Human Alpha-Fetoprotein (RhAFP) in the Model of TNBS-Induced Colitis. In:

Orlando, FL, USA: American College of Gastroenterology. 2017.
<https://www.eventsbridge.com/2017/wcogacg2017/ajaxcalls>

65. Kusner LL, Sengupta M, Aguiló-Seara G, Sherman I. Preclinical Pilot Study of Alpha-Fetoprotein on Moderation of MG Weakness. Abstracts of the 13th International Conference on Myasthenia Gravis and Related Disorders, NY, USA. 2017;May 15.
66. Linson EA, Hanauer SB. More Than a Tumor Marker. A Potential Role for Alpha-Feto Protein in Inflammatory Bowel Disease. *Inflamm Bowel Dis* 2019; 25 (7): 1271–76. doi.org/10.1093/ibd/izy394.
67. Nunez EA, Benassayag C, Vallette G, Martin ME, Vranckx R, Christeff N, et al. The physicochemical and biological properties of alpha-fetoprotein depend on its ligand environment. *J Nucl Med Allied Sci* 1989;33(3 Suppl):18-26. <https://pubmed.ncbi.nlm.nih.gov/2480415>.
68. Budhwar S, Verma P, Verma R, Rai S, Singh K. The Yin and Yang of Myeloid Derived Suppressor Cells. *Front Immunol* 2018; 9:2776. doi.org/10.3389/fimmu.2018.02776
69. Nepal MR, Shah S, Kang KT. Dual roles of myeloid-derived suppressor cells in various diseases: a review. *Arch Pharm Res* 2024; 47, 597–616. doi.org/10.1007/s12272-024-01504-2
70. Pak VN, Sherman IA. Comprehensive approach to cancer immunotherapy – Simultaneous targeting of myeloid-derived suppressor cells and cancer cells with AFP conjugates. *CROH* 2024; 200, 104407. doi.org/10.1016/j.critrevonc.2024.104407
71. Pak VN, Pak NA, Reshetnikov SS, Nikonov SD, Ogirenko AP. Method of treatment of malignant neoplasms and complex preparation having antineoplastic activity for use in such treatment. US Patent 6878688B2, 2005. <https://patents.google.com/patent/US6878688B2/en>
72. Pak VN. Alpha-fetoprotein and Its Receptor in Fixing the Cancer Brakes. Cambridge Scholars Publishing, Tyne, England; 2021; Chapter 7:83-118. ISBN: 1-5275-6716-8.
73. Tesi RJ. MDSC; the Most Important Cell You Have Never Heard Of. *Trends Pharmacol Sci* 2019;40(1):4-7. doi: 10.1016/j.tips.2018.10.008.
74. Beury DW, Park SM, Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells in Cancer: Recent Advances and Future Directions. *Front Immunol* 2024;15:3220. doi: 10.3389/fimmu.2024.03220
75. Pawelec G, Verschoor CP, Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Not Only in Tumor Immunity. *Front Immunol* 2019;10:1099. doi.org/10.3389/fimmu.2019.01099
76. Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. *Nat Rev Clin Oncol* 2024; 21:147–164. doi.org/10.1038/s41571-023-00846-y
77. Akkari L, Amit I, Bronte V, Fridlender ZG, Gabrilovich DI, Ginhoux F, et al. Defining myeloid-derived suppressor cells. *Nat Rev Immunol* 2024;24(12):850-857. doi: 10.1038/s41577-024-01062-0
78. Mohd Idris RA, Mussa A, Ahmad S, Al-Hatamleh MAI, Hassan R, Tengku Din TADAA, et al. The Effects of Tamoxifen on Tolerogenic Cells in Cancer. *Biology (Basel)*. 2022;11(8):1225. doi: 10.3390/biology11081225.

79. He S, Zheng L, Qi C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy. *Mol Cancer* 2025;24, 5. doi.org/10.1186/s12943-024-02208-3.

80. Munson PV, Adamik J, Hartmann FJ, Favaro PMB, Ho D, Bendall SC, et al. Polyunsaturated Fatty Acid-Bound α - Fetoprotein Promotes Immune Suppression by Altering Human Dendritic Cell Metabolism. *Cancer Res* 2023;83(9):1543-1557. doi: 10.1158/0008-5472.CAN-22-3551

81. Liu H, Yeung WHO, Pang L, Liu J, Liu XB, Ng KTP, et al. Arachidonic acid activates NLRP3 inflammasome in MDSCs via FATP2 to promote post-transplant tumour recurrence in steatotic liver grafts. *JHEP Reports* 2023; 5(12):100895. doi.org/10.1016/j.jhepr.2023.100895.

82. Ren J, Zeng W, Tian F, Zhang S, Wu F, Qin X, et al. Myeloid-derived Suppressor Cells Depletion May Cause Pregnancy Loss via Upregulating the Cytotoxicity of Decidual Natural Killer Cells. *Amer J Repr Immunol* 2019;81 (4):e13099. doi.org/10.1111/aji.13099.

83. Köstlin-Gille N, Dietz S, Schwarz J, Spring B, Pauluschke-Fröhlich J, Poets ChF, et al. HIF-1 α -Deficiency in Myeloid Cells Leads to a Disturbed Accumulation of Myeloid Derived Suppressor Cells (MDSC) During Pregnancy and to an Increased Abortion Rate in Mice. *Front Immunol* 2019; 10: 161. doi.org/10.3389/fimmu.2019.00161.

84. Donnelly J, Moffett L, Barnett AJ, Trivedi H, Schwartz F, Lo J, et al. AsymMirai: Interpretable Mammography-based Deep Learning Model for 1-5-year Breast Cancer Risk Prediction. *Radiology* 2024;310(3):e232780. doi: 10.1148/radiol.232780

85. Wang Y, Joshu CE, Curtis SD, Douville C, Burk VA, Ru M, et al. Detection of Cancers Three Years prior to Diagnosis Using Plasma Cell-Free DNA. *Cancer Discov* 2025;15 (9): 1794–1802. doi.org/10.1158/2159-8290.CD-25-0375.

86. Dominguez GA, Condamine T, Mony S, Hashimoto A, Wang F, Liu Q, Forero A, et al. Selective Targeting of Myeloid-Derived Suppressor Cells in Cancer Patients Using DS-8273a, an Agonistic TRAIL-R2 Antibody. *Clin Can Res* 2017; 23(12), 2942–2950. doi.org/10.1158/1078-0432.CCR-16-1784.

87. Pak VN. Selective targeting of myeloid-derived suppressor cells in cancer patients through AFP-binding receptors. *Future Sci OA* 2018; 5:FSO321. doi: 10.4155/fsoa-2018-0029

88. Feng PH, Lam B, Tseng SH, Kung YJ, Farmer E, Cheng MA, Hung CF. NKG2D-Fc fusion protein promotes antitumor immunity through the depletion of immunosuppressive cells. *Cancer Immunol Immunother* 2020;69(10):2147-2155. doi: 10.1007/s00262-020-02615-7.

89. Mobini S, Chizari M, Rismani E, Mafakher L, Sadrzadeh MJ, Vosough M. Targeting CD84 protein on myeloid-derived suppressor cells as a novel immunotherapy in solid tumors. *Comp Meth Prog Biomed* 2025;108607. doi: 10.1016/jcmpb.2025.108607.

90. Zhou C, He L, Gu Y, Shi B, Cheng X, Li Q, et al. Peripheral myeloid-derived suppressor cell as a biomarker for diagnosing and predicting the treatment efficacy of colorectal cancer. *J Clin Oncol* 2025; 43, e15535. doi.org/10.1200/JCO.2025.43.16_suppl.e15535

91. Zhang H, Yin X, Wang S, Li Q, Xia L, Qiu J, et al. Combined elevation of myeloid-derived suppressor cells and Tregs predicts lymph node metastasis in breast cancer. *BMC Cancer* 2025; 25(1):1806. doi: 10.1186/s12885-025-15277-4

92. Gonda K, Shibata M, Ohtake T, Matsumoto Y, Tachibana K, Abe N, et al. Myeloid-derived suppressor cells are increased and correlated with type 2 immune responses, malnutrition, inflammation, and poor prognosis in patients with breast cancer. *Oncol Lett* 2017;14(2):1766-1774. doi: 10.3892/ol.2017.6305.

93. Pomatto-Watson LCD, Bodogai M, Carpenter M, Chowdhury D, Krishna P, Ng S, et al. Replenishment of myeloid-derived suppressor cells (MDSCs) overrides CR-mediated protection against tumor growth in a murine model of triple-negative breast cancer. *GeroScience* 2022; 44, 2471–2490. doi.org/10.1007/s11357-022-00635-y

94. Belyaev NN, Bogdanov AYu, Savvulidi PhG, Krasnoshtanov VK, Tleulieva RT, Alipov GK, et al. The influence of alpha-fetoprotein on natural suppressor cell activity and Ehrlich carcinoma growth. *Kor J Physiol Pharmacol* 2008; 12:193-197. doi.org/10.4196/kjpp.2008.12.4.193

95. Gaißler A, Bochem J, Spreuer J, Ottmann S, Martens A, Amaral T, et al. Early decrease of blood myeloid-derived suppressor cells during checkpoint inhibition is a favorable biomarker in metastatic melanoma. *J Immunother Cancer* 2023;11(6):e006802. doi: 10.1136/jitc-2023-006802.

96. Zhang J, Wang L, Zhang S, Cao R, Zhao Y, Zhao Y, et al. Alpha-fetoprotein predicts the treatment efficacy of immune checkpoint inhibitors for gastric cancer patients. *BMC Cancer* 2024;24, 266. doi.org/10.1186/s12885-024-11999-z

97. Möller M, Orth V, Umansky V, Hetjens S, Braun V, Reißfelder C, et al. Myeloid-derived suppressor cells in peripheral blood as predictive biomarkers inpatients with solid tumors undergoing immune checkpoint therapy: systematic review and meta-analysis. *Front Immunol* 2024; 15:1403771. doi: 10.3389/fimmu.2024.1403771

98. Severin SE, Kulakov VN, Moskaleva EY, Severin ES, Slobodianik II, Klimova TP. The distribution of iodine-125 labeled alpha-fetoprotein in the animal organism and its accumulation in the tumor. (Rus.) *Vest Ross Akad Med Nauk* 2012; 4: 11–15. PMID: 22834322. <https://europepmc.org/article/MED/22834322>

99. Deutsch HF, Tsukada TS, Sasaki T, Hirai H. Cytotoxic Effects of Daunomycin-Fatty Acid Complexes on Rat Hepatoma Cells. *Cancer Res* 1983;43 (6): 2668–72. PMID: 6850584. <https://pubmed.ncbi.nlm.nih.gov/6850584>

100. Sherman IA, Hill W, Griffin P, Andrews D, Boohaker RJ, Stinson K, et al. Efficacy and safety study of a novel alpha- fetoprotein (AFP)-maytansine conjugate in an ovarian xenograft model. *J Clin Oncol* 2023;41:16_suppl, e14570. doi.org/10.1200/JCO.2023.41.16_suppl.e14570.

101. Griffin P, Hill WA, Rossi F, Boohaker R, Stinson K, Sherman I. High anti-tumor activity of a novel alpha-fetoprotein-maytansinoid conjugate targeting alpha-fetoprotein receptor in colorectal cancer xenograft model. *Cancer Cell Int* 2023;23(1):60. doi.org/10.1186/s12935-023-02910-0

102. Calderon JJ, Prieto K, Lasso P, Fiorentino S, Barreto A. Modulation of myeloid-derived suppressor cells in the tumor microenvironment by natural products. *Arch Immunol Ther Exp (Warsz)* 2023;71(1):17. doi: 10.1007/s00005-023-00681-0.

103. Alsalmam A, Al-Mterin MA, Elkord E. Role of T regulatory cells and myeloid-derived suppressor cells in COVID-19. *J Immunol Res* 2022; 5545319. doi: 10.1155/2022/5545319.

104. Peng B, Luo Y, Xie S, Zhuang Q, Li J, Zhang P, et al. Proliferation of MDSCs may indicate a lower CD4+ T cell immune response in schistosomiasis japonica. *Parasite* 2024; 31, 52. doi.org/10.1051/parasite/2024050.

105. Perfilieva YV, Aquino AD, Borodin MA, Kali A, Abdolla N, Ostapchuk YO, et al. Can interventions targeting MDSCs improve the outcome of vaccination in vulnerable populations? *Int Rev Immunol* 2024; 1–17. doi.org/10.1080/08830185.2024.2443423

106. Zhang C, Wang H, Aji T, Li Z, Li Y, Ainiwaer A, et al. Targeting myeloid-derived suppressor cells promotes antiparasitic T-cell immunity and enhances the efficacy of PD-1 blockade. *Nat Commun* 2024; 15 6345. doi.org/10.1038/s41467-024-50754-7

107. Zanghi A, Di Filippo PS, Avolio C, D'Amico E. Myeloid-derived suppressor cells and multiple sclerosis. *Curr Neuropharm* 2025;23, 1.
dx.doi.org/10.2174/1570159X22999240710142942

108. Xiang X, Zhang Z, Xu W, Huang Z, Zhang J. Role of Myeloid-Derived Suppressor Cells (MDSCs), Specifically Monocyte-Derived MDSCs, in Type 2 Diabetes-Related Diabetic Retinopathy. *Diabetes Metab Syndr Obes* 2025;18:2213-2220.
doi.org/10.2147/DMSO.S527411

109. Yan J, Guo S, He J, Huang H, Xu Y. Myeloid-derived suppressor cells in metabolic and cardiovascular disorders. *Trends Endocrinol Metab* 2025; S1043-2760(25)00024-4. doi: 10.1016/j.tem.2025.02.001.

110. Kaminski VdL, Menezes ALO, de Lima KG, de Almeida SL, da Silva DVA, Franco FN, et al. Immunoregulation in Fungal Infections: A Review and Update on the Critical Role of Myeloid-Derived Suppressor Cells. *J Fungi* 2025; 11(7):496. doi.org/10.3390/jof11070496

111. www.bms.com/assets/bms/ca/documents/productmonograph/ABRAXANE_EN_PM.pdf

112. Meng X, Wang X, Jiang C, Zhang S, Cheng S. Correlation analysis of lymphocyte-monocyte ratio with pathological complete response and clinical prognosis of neoadjuvant chemotherapy in patients with breast cancer. *Transl Oncol* 2022;18:101355. doi: 10.1016/j.tranon.2022.101355

113. Fausti V, De Vita A, Vanni S, Ghini V, Gurrieri L, Riva N, Casadei R, Maraldi M, Ercolani G, Cavaliere D, et al. Systemic Inflammatory Indices in Second-Line Soft Tissue Sarcoma Patients: Focus on Lymphocyte/Monocyte Ratio and Trabectedin. *Cancers* 2023; 15(4):1080. doi.org/10.3390/cancers15041080.

114. Alpha Cancer Technologies Inc. <https://alpha-cancer.com>

115. Zhang M, Wang L, Liu W, Wang T, De Sanctis F, Zhu L, et al. Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors. *J Immunol Res* 2022;2022:2253436. doi: 10.1155/2022/2253436.

116. Sinha P, Ostrand-Rosenberg S. Withaferin A, a potent and abundant component of *Withania somnifera* root extract, reduces myeloid-derived suppressor cell function (P2103). *J Immunol* 2013; 190 (1_Supplement): 170.8. doi.org/10.4049/jimmunol.190.Supp.170.8

117. Herve F, Rajkowski K. The Warfarin and Phenylbutazone Binding Sires of the Rat Alpha-Fetoprotein (AFP): Interaction with Other Drugs and Estrogens. In *Biological Activities of Alpha-Fetoprotein*, 1987; 1:51–67. USA: CRC Press, Inc.

118. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. *Cancer Res* 2006;66(18):9299-307. doi: 10.1158/0008-5472.CAN-06-1690.

119. Tobin RP, Cogswell DT, Cates VM, Davis DM, Borgers JSW, Van Gulick RJ, et al. Targeting MDSC Differentiation Using ATRA: A Phase I/II Clinical Trial Combining Pembrolizumab and All-Trans Retinoic Acid for Metastatic Melanoma. *Clin Cancer Res* 2023;29(7):1209-1219. doi: 10.1158/1078-0432.CCR-22-2495.

120. Juin SK, Ghosh S, Majumdar S. Glycyrrhizic acid facilitates anti-tumor immunity by attenuating Tregs and MDSCs: An immunotherapeutic approach. *Int Immunoph* 2020; 88:106932. doi: 10.1016/j.intimp.2020.106932

121. Iversen L, Sivasubramaniam S, Lee AJ, Fielding S, Hannaford PC. Lifetime cancer risk and combined oral contraceptives: the Royal College of General Practitioners' Oral Contraception Study. *Am J Obstet Gynecol* 2017;216(6):580.e1-580.e9. doi: 10.1016/j.ajog.2017.02.002

122. Karlsson T, Johansson T, Höglund J, Ek WE, Johansson Å. Time-Dependent Effects of Oral Contraceptive Use on Breast, Ovarian, and Endometrial Cancers. *Cancer Res* 2021;81(4):1153-1162. doi: 10.1158/0008-5472.CAN-20-2476.

123. Cao L, Tang Y, Niu X, Guo Q, Huang L. Mifepristone regulates macrophage-mediated natural killer cells function in decidua. *Repr Biol* 2021;21(3):100541. doi.org/10.1016/j.repbio.2021.100541

124. Check JH, Check D, Poretta T. Mifepristone Extends Both Length and Quality of Life in a Patient With Advanced Non-small Cell Lung Cancer that Has Progressed Despite Chemotherapy and a Check-point Inhibitor. *Anticancer Res* 2019;39(4):1923-1926. doi: 10.21873/anticanres.13301.

125. Song P, Song F, Shao T, Wang P, Li R, Chen Z-S, et al. Natural products: promising therapeutics for targeting regulatory immune cells in the tumor microenvironment. *Front Pharmacol* 2024; 15:1481850. doi: 10.3389/fphar.2024.1481850.

126. Butler MS, Caron RJ, Blaskovich MAT, Henderson IR. Natural product-derived compounds in clinical trials and drug approvals. *Nat Prod Rep* 2025; Advance Article. doi.org/10.1039/D5NP00031A

127. Ostrand-Rosenberg S, Lamb TJ, Pawelec G. Here, There, and Everywhere: Myeloid-Derived Suppressor Cells in Immunology. *J Immunol* 2023;210(9):1183-1197. doi.org/10.4049/jimmunol.2200914

128. Pak VN. The use of alpha-fetoprotein for the treatment of autoimmune diseases and cancer. *Ther Deliv* 2018;9, 37-46. doi: 10.4155/tde-2017-0073

129. Thornthwaite JT, et al. Anticancer Effects of Curcumin, Artemisinin, Genistein, and Resveratrol, and Vitamin C: Free Versus Liposomal Forms. *Adv Biol Chem* 2017;7 (1): 720-26. doi.org/10.4236/abc.2017.71002

130. Dudich E, Semenkova L, Dudich I, Tatulov E. Method of reducing cancer cell proliferation by administering recombinant alpha-fetoprotein. US Patent: 9931373, 2018. <http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetacgi%2FPTO%2Fsearch-adv.htm&r=1&f=G&l=50&d=PTXT&S1=9,931,373&OS=9,931,373&RS=9,931,373>

131. Kojima-Yuasa A, Matsui-Yuasa I. Pharmacological Effects of 1'-Acetoxychavicol Acetate, a Major Constituent in the Rhizomes of Alpinia Galanga and Alpinia Conchigera. *J Med Food* 2020;23 (5): 465–75. doi.org/10.1089/jmf.2019.4490

132. Arshad NM, In LL, Soh TL, Azmi MN, Ibrahim H, Awang K, et al. Recombinant human alpha fetoprotein synergistically potentiates the anti-cancer effects of 1'-S-1'-acetoxychavicol acetate when used as a complex against human tumours harbouring AFP-receptors. *Oncotarget* 2015;30;6(18):16151-67. doi: 10.18632/oncotarget.3951

133. Sevko A, Michels T, Vrohlings M, Umansky L, Beckhole P, Kato M, et al. Antitumor Effect of Paclitaxel Is Mediated by Inhibition of Myeloid-Derived Suppressor Cells and Chronic Inflammation in the Spontaneous Melanoma Model. *J Immunol* 2013; 190 (5): 2464–71. doi.org/10.4049/jimmunol.1202781

134. Kotra LP, Paige CJ, Bello AM, Sherman I. University Health Network. Drug complexes comprising alpha- fetoprotein. WIPO patent WO/2016/119045A1 (2016). patentimages.storage.googleapis.com/0c/a7/ee/1fd56e9fbcb392/WO2016119045A1.pdf

135. Suresh A, Bagchi D, Kaliappan KP. Thapsigargin: a promising natural product with diverse medicinal potential - a review of synthetic approaches and total syntheses. *Org Biomol Chem* 2024;22(43):8551-8569. doi: 10.1039/d4ob01239a

136. Zeng AQ, Yu Y, Yao YQ, Yang FF, Liao M, Song LJ, et al. Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models. *Oncotarget* 2017;9(3):3794-3804. doi: 10.18632/oncotarget.23376

137. Kaschula CH, Tuveri R, Ngarande E, Dzobo K, Barnett C, Kusza DA, et al. The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. *BMC Cancer* 2019;19, 248. doi.org/10.1186/s12885-019-5388-8

138. Lathers DM, Clark JI, Achille NJ, Young MR. Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. *Can Imm Immunother* 2004;53, 5: 422–430. doi: 10.1007/s00262-003-0459-7.

139. McCrudden MTC, Singh TRR, Migalska K, Donnelly RF. Strategies for Enhanced Peptide and Protein Delivery. *Ther Deliv* 2013; 4 (5): 593–614. doi.org/10.4155/tde.13.31

140. Starikov VV, Rodionov SYu. Method of alpha-fetoprotein-containing tablet making. (Rus.) Patent of Russia RU2154468C1, 2000.
https://yandex.ru/patents/doc/RU2154468C1_20000820

141. Pyzik M, Kozicky LK, Gandhi AK, Blumberg RS. The therapeutic age of the neonatal Fc receptor. *Nat Rev Immunol* 2023;23(7):415-432. doi: 10.1038/s41577-022-00821-1

142. Blumberg R, Baker SK, Pyzik M, Gandhi A. Methods to manipulate alpha-fetoprotein (AFP). US Patent 0200031928, 2020.

143. Semenkova LN, Dudich EI, Dudich IV. Induction of Apoptosis in Human Hepatoma Cells by Alpha-Fetoprotein. *Tumor Biol* 1997;18 (5): 261–73. doi.org/10.1159/000218039

144. Bennett JA, Hohenhaus A, Andersen TT. Proof-of-Concept Study of an Alpha-Fetoprotein-Derived Peptide for the Management of Canine Mammary Cancer. *Animals* (Basel) 2023;13(3):403. doi: 10.3390/ani13030403.

145. Stewart MJ, Steenkamp V. The Biochemistry and Toxicity of Atractyloside: A Review. *Ther Drug Monit* 2000; 22 (6): 641–49. doi: 10.1097/00007691-200012000-00001

146. Pak V. Treating cancer using atractyloside. WO Patent 2010/003232 A1, 2009. <https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010003232>.

147. Pak VN. Compositions of alpha-fetoprotein and inducers of apoptosis for the treatment of cancer. WO patent 2007056852A1. 2007. patents.google.com/patent/WO2007056852A1/en.

148. Pak VN, Molchanov O, Vincent M. Treatment of Metastatic Colorectal Cancer with Aimpila, a Glycoside/Alpha-Fetoprotein Complex. *J Clin Oncol* 2007; 25 (18_suppl): 3589–3589. doi.org/10.1200/jco.2007.25.18_suppl.3589.